知识与资讯
专业词汇
 
SMT与PCB术语汇总(4)
发布时间:2011-7-16 17:17:00||  点击:7092次||  文章分类:专业词汇||  发布人:翻译家(Fanyijia.com)


电化学与小孔电镀制程
  
  1、Active Carbon 活性炭
  是利用木质锯末或椰子壳烧成粒度极细的木炭粉,因其拥有极大的表面积,而能具备高度的吸附性,可吸附多量的有机物,故称为活性炭。常用于气体脱臭,液体脱色,或对电镀槽液进行有机污染清除之特殊用途。商品有零散式细粉或密封式罐装炭粒等。
  
  2、Addition Agent 添加剂
  改进产品性质的制程添加物,如电镀所需之光泽剂或整平剂等即是。
  
  3、Amp﹣Hour 安培小时
  是电流量的单位,即 1 安培电流经 1 小时所累积的电量,镀液中添加的有机助剂常用"安培小时计"当成消耗量监视的工具。
  
  4、Anion 阳向游子(阴离子)
  在镀液(或其它电解液)中朝向阳极游动的带负电的离子团或游子团。
  
  5、Anode Sludge 阳极泥
  当电镀进行时,常因阳极不纯而有少许不溶的细小杂质出现在镀液中,若令其散布的话,将被电场感应而游往阴极,造成镀层粗糙。故需加装阳极袋(Anode Bag)予以阻绝,以免影响镀层品质。又另在粗铜进行电解纯化时,其粗铜阳极所产生的阳极泥中,常有铂族贵金属,尚可提炼出各种珍贵的元素。
  
  6、Anode 阳极
  是电镀制程中供应镀层金属的来源,并也当成通电用的正极。一般阳极分为可溶性阳极及不可溶的阳极。又此字之形容词为 Anodic,如 Anodic Cleaning 就是将工作物放置在电解液的阳极上,利用其溶蚀作用,及同时所产生的氧气泡进行有机摩擦性的清洗动作,谓之 Anodic Cleaning。
  
  7、Anodizing 阳极化
  指将金属体放在电解槽液中的阳极上进行表面处理,与一般电镀处理放置在阴极的电解处理恰好相反。此词又可说成 Anodise Treatment。例如铝材即可由阳极处理,而在表面上生成一层结晶状氧化铝的保护膜。
  
  8、Aspect Ratio 纵横比
  在电路板工业中特指"通孔"本身的长度与直径二者之比值,也就是板厚对孔径之比值,以国内的制作水准而言,此纵横比在 4/1 以上者,即属高纵比的深孔,其钻孔及镀通孔制程都比较困难。
  
  9、Carrier载体
  镀镍制程常在槽液中加入两种有机光泽剂,第一种称 Primary Brightener或称Carrier Brightener,多为磺酸盐类,做为运送的功用。第二种为真正发光发亮的二级光泽剂(Secondary Brightener),以不饱和双键或三键类有机物居多。前者可进行运送分发的工作,使镀层能全面均匀的发亮。此种初级载体光泽剂,本身对镀层亦有整平的功用,且对镀面亦具有半光泽的效果,为电路板金手指镀镍所常采用。
  
  10、Cathode 阴极
  是电镀槽液中接受金属镀层生长的一极,而电路板在进行各种电镀湿式加工时,亦皆放置在阴极。
  
  11、Cation阴向游子,阳离子
  由正负电荷离子所组成的电解质水溶液中,其带正电荷的简单离子,或聚集成群的大型游子团,均有泳向阴极的趋势,称为Cation。
  
  12、Current Density 电流密度
  是指在电镀或类似的湿式电解处理中,在其阴阳极单位面积上所施加的电流强度 (安培)而言。假设阴极面积为 10 ft2 ,所加的电流为 300 A,则其阴极电流密度应为 30 A/ft2 (ASF)。电流密度是电镀操作的一项重要条件,通常若专指阳极时应注明为"阳极电流密度",未特别指明时则多半指阴极电流密度。电流密度的公制单位是 A/dm2 (ASD),而 1 ASD=9.1 ASF。在各种电镀制程中,皆有其"临界电流密度"(Critical Current Density),是指能得到良好镀层组织的最大电流密度,凡超过此一数值者,将产生其它意外的反应,而导致镀层劣化无法使用。
  
  13、Diffusion Layer 扩散层
  即电镀时,液中镀件阴极表面所形成极薄"阴极膜"(Cathode Film) 的另一种称呼。
  
  14、Dipole 偶极,双极
  指具有极性的分子或化合物,其限定距离的两端各拥有电性互异的相同电量,谓之"偶极",其间所呈现的力矩称为 Dipole Moment。
  
  15、Double Layer电双层
  是指电镀槽液中在最接近阴极表面处,因槽液受到阴极强力负电的感应而出现的一层带正电的离子层,其与阴极之间的薄层称为"电双层"。此层厚度约为10 A,是金属离子在阴极上沉积镀出的最后一道关卡。此时金属离子团会将游动中附挂各种"配属体"(Ligand,如水分子 CN-NH3 等)丢掉,将独自吸取电子而登陆阴极,镀出金属来。
  
  16、Electrodeposition电镀
  在含金属离子的电镀液中施加直流电,使在阴极上可镀出金属来。此词另有同义字Electroplating,或简称为Plating 。更正式的说法则是ElectrolyticPlating 。是一种经验多于学理的加工技术。
  
  17、Electroforming电铸
  使用低电流密度与长时间操作,进行极厚镀层的特殊电镀技术,谓之电铸。以"镍电铸"最常见,可用以制作唱片的复制压膜,立体成形的电胡刀网,与其它各种外形复杂的"反形"模具等。
  
  18、EMF 电动势
  为Electromotive Force的缩写,是使电子在导体中产生流动的原动力,其近似的术语有"电位差"或"电压"等。
  
  19、Farady 法拉第
  是一种"静电量"的单位。按理论值每个单独电子所负荷电量为4.803*10-1个"静电单位",其每个莫耳电子(Mole,6.023*102个)的总静电荷,应为96500库伦(安培.秒)。为纪念发现电解定律的的英国电化学家Michael Farady起见,特将此96500库伦的静电量命名为1个Farady。
  
  20、Flash Plating 闪镀
  指在极短时间内以较高的电流密度,使被镀物表面得到极薄的镀层称为闪镀,通常多指很薄的镀金层而言。例如,ASTM B488即规定,凡在10微吋(?in)或0.25微米以下的镀金层即称为"闪镀"。
  
  21、Galvanic Series 贾凡尼次序
  亦即电化学教科书中所说的金属"电动次序"(Electromotive Series)。是将各种金属及合金,在既定环境中,按其活泼的程度所排列的顺序。即以解离电压为排列的准则,"负值"表示反应是自然发生的,其数值表示已高出自然平衡状态若千伏特。"正值"则表示反应是不自然发生的,若硬欲其进行时,须从外界另施加电压若千伏特才行。The Electromotive Force Series Electrode Potential,VLi Li+ -3.045Rb Rb+ -2.93K K+ -2.924Ba Ba++ -2.90Sr Sr++ -2.90C Ca++ -2.87Na Na+ -2.715Mg Mg++ -2.37Al Al3+ -1.67Mn Mn++ -1.18Zn Zn++ -0.762Cr Cr3+ -0.74Cr Cr++ -0.56Fe Fe++ -0.441Cd Cd++ -0.402In In3+ -0.34Tl Tl+ -0.336Co Co++  -0.227Ni Ni++  -0.250Sn Sn++  -0.136Pb Pb++  -0.126Fe Fe3+  -0.04Pt/H2 H+    0.000Sb Sb3+  +0.15Bi Bi3+  +0.2As As3+  +0.3Cu Cu++   +0.34Pt/HO- O2    +0.40Cu Cu+   +0.52Hg Hg2++ +0.789Ag Ag+   +0.799Pd Pd++  +0.987Au Au3+  +1.50Au Au+  +1.68 由附表中可看以出由锂到金,按其活性所排列的次序,其在上位者可胍下位金属予以"还原",使其从离子状态中取代出来,并使之还原成金属。例如将锌粒投入硫酸铜溶液中,即发生锌被溶解掉,而铜被沉积出来的反应,若以简式说明,即为:Zn+Cu2+ Zn2++Cu↓,其电位变化为 -0.726-(+0.34)= -0.422,表示此反应能自然发生。贾凡尼(Galvani)是 18世纪的意大利解剖学家,由于曾用铜及铁的钩子钩住动物肉体(电解质),而发现产生电流的情形,因此开启了"电化学"的另一片领域。后人特将有关金属"电化学含意"的许多名词都,冠以他的名字以示纪念,如 Galvanic Effect、Galvanic Cell、Galvanic Corrosion 等。
  
  22、Haring-Blum Cell 海因槽
  系 Haring 及 Blum 二人在 1923 年所发明的,是一种对电镀溶液"分布力"(Throwing Power)的好坏,所进行测试的简易小型试验槽。在其长方型槽中的两端各放置被镀的阴极两片,在两阴极片间所含溶液中放置一片阳极,此阳极与两端阴极的各目距离并不相等,致使其间的电阻也不相同。进而使得"一次电流分布"(Primary Current Distribution)的大小也不一样。但若能在镀液中另外加入有机物整平剂(Leveller),则可使其电流分布得以改善(即二次电流分布),让两阴极板上所镀得的重量更为接近,也就是已使其"分布力"获得提升,而让电路板面各处的镀厚更为均匀。用以监视这种"镀液分布力"好坏的仪器即为"海因槽"(详见电路板信息志杂第 31期55 页)。
  
  23、Hull Cell 哈氏槽
  是一种对电镀溶液既简单又实用的试验槽,系为 R.O.Hull 先生在 1939 年所发明的。有 267 CC、534 CC 及 1000 CC 三种型式,但以 267 最为常用。可用以式验各种镀液,在各种电流密度下所呈现的镀层情形,以找出实际操作最佳的电流密度,属于一种"经验性"的试验。通常的做法是将表面故意皱折的阳极,放在图中的第 2 边(故意皱折是使其表面积与面对的阴极片相等),将阴极放在第 4 边,至于所用之电流密度及时间则随各种镀液而不定,须不断试做以找出标准条件。镀后可将阴极片的下缘,对准"哈氏标尺"上某一所用电流密度处,即可看出阴极片上最佳区域所对应的实际电流密度。哈氏槽还有另一用途,是将阳极放在第 1 边而将阴极放在第3 边,亦可看出阴极片上最左侧低电流区的镀层情形。
  
  24、Hydrogen Overvoltage 氢超电压,氢过电压
  由于电镀时会有 H+被还原成H2,而在阴极表面出现,以硫酸锌溶液之镀锌为例,前述"电动次序表"中所列之数据,锌离子之"沉积"电压Zn===Zn卄为 -0.762 V,而氢离子的沉积电压为2H+====H2 为 0.0000V,由此二式可知锌比氢活泼,或氢比锌安定。故当还原反应发生时,氢离子应比锌离子有更多的机会被还原出而镀在阴极上。换言之,在某一电压下进行镀锌时,将会有多量的氢气产生,而不易有锌出现才对。然而这种理论却与实际所观察到的事实却恰好相反,此即表示,若欲将氢离子还原成为氢气时,势必还需比 0.0000 V 更高的电压才行。此种对氢离子在实际上比理论上所"高出"的沉积电压即为"Hydrogen Overvoltage"。若就提高电镀效率及减少"氢脆"的立场而言,当然是希匡金属的沉积愈多愈好,氢气还原的愈少愈好。因而,当"氢超电压"愈高时,对电镀愈有利。"氢超电压"是镀液的一种特性,也是镀液与被镀金属底材间所配合的一种关系。如于酸性镍镀液中,欲在白金、铸铁,或锌压铸对象上镀出光泽镍时就很困难。因其等所呈现的"氢超电压"太低,故在阴极上会产生大量的氢气,而不易镀上镍层。因而必须先用"氢超电压"较高的碱性氰化铜去打底(Strike),有了铜层之后,在酸性镀钻溶液中的氢超电压,其情况会完全改观,也才能继续镀镍。
  
  25、Ligand 错离子附属体
  一般镀液中的金属离子多以错离子(Complex Ion)形态存在,其中心部份为金属离子,外围常附着有CN-、NH3、H2O、OH-、NO+,或有机物等各种荷有正电、负电,或中性附属体,以形成较安定的配位(Coordinated)离子团。电镀进行中,此种荷电的 "离子团"会游 近阴极,在其到达阴极膜中后一道关卡的"电双层"(Electrical Double Layer)时,即甩掉外围的附属体,而只让带正电的单独金属离子穿过,并自阴极表面获得电子而沉积到阴极镀件上,以完成电镀周期而组成镀层。通常金属盐类水解成离子时,外围都会有附属体(Ligand)存在,至少也有水分子的配位,皆可称为 Ligand。〔编注︰上述之"错"是指"错综复杂"的错,而非"对错"的错。此术语早年是直接引自日文,当初之前辈若能将其译为"复离子"或"杂离子",甚至于"综离子"都应比"错离子" 好,而不必一错至今难以更正。如此则所有的学生都能望文生义,何须再丈二金刚的茫然瞎背,甚至还存疑"对离子"为何。由此可知名词术语其慎始之重要。表面黏"着"岂非另一恶例﹖〕
  
  26、Limiting Current Density 极限电流密度
  就电镀制程的阴极而言,是指当能够得到结构组织良好的镀层时,其可用电流密度的上限值称为"极限电流密度"。一旦超过其极限值时, 不但产生多量氢气且其镀层也会出现烧焦(Buring)甚至粉化的情形。另就阳极而言, 则指良好溶蚀电流密度的上限,若电流再高时也会出现多量氧气,并将伴随发生极化及钝化等现象, 反不利金属之溶解。
  
  27、Macro-Throwing Power 巨观分布力
  指电镀进行中处在阴极上的柀镀物,其整个表面上金属沉积的分布情形。此术语一般皆径行简称为"Throwing Power 分布力"。相对于此词者是 "Micro-Throwing Power 微分布力";是指镀件表面局部凹陷处,可先被镀层填平的能力,也就是一段所称的"整平力 Leveling Power"。如电路板面中央与板边板角的厚度比较,或孔壁中镀铜厚度的分布情形即为"巨分布力";而孔壁上凹陷的填平能力即为"微分布力"。
  
  28、Mass Transport 质量输送
  此词常出现在电镀学术中。镀液中的"阳离子"或"阳向游子团"柱电镀中往阴极移动,以便接受阴极上供应的电子,而"登陆"(Deposit 沉积)成为金属原子,完成电镀的动作。上述之阳离子的"移动",即为一种 Mass Transport。若再进一步了解,则此种"质传"之进展,尚可细分为迁移(Migration)、对流(Convection),及扩散(Diffusion)等三种原动力,现分述于下︰●迁移——事实上应称此词为 Ionic Migration 才更正确,那是指镀液中的阳向游子,受到在阳极方面的同电相斥,及阴极异电相吸的力量下,往阴极移动的现象即称为"离子性迁移"。此种迁移力量的大小,与所施加的电压及电流成正比。由于被先天的"极限电流"所限,当电流太大时,则阴极上会产生多量的氢气,镀层结晶也出现粗糙的烧焦现象造成电镀失败。因而无法在既有条件下将无法尽情的加大电流。事实上对整体金属沉积而言,此一迁移部份的页献并不很大。●对流——是指镀液受外力的驱使而在极板附近流动,使阴极附近之金属离子浓度较低处,与阳极附近浓度较高处,在槽液流动中得以相互调和。所谓外力是指过滤循环、吹气、液中喷液等强制性驱动,以及对槽液加温,使上下比重不同而形成垂直对流。"对流"的总和才是"质传"的主要支持者。电路板在高纵横比的深孔中,因不易对流,故常造成孔壁中间部份镀层的厚度分布不足,这是很难解决的问题。●扩散——是在阴极镀面附近,从其金属离子浓度降低 1% 处计算起,一直降低到达阴极表面为止,此一薄层的液膜称为"阴极膜"(Cathode Film),或称为"扩散层"(Diffusion Loyer)。从微观上看来,各种搅拌对此扩散层中离子的补给均已无能为力,只有仅靠扩散与迁移的力量迫使金属离子完成最后的"登陆"。所谓"扩散"就是指高浓度往低浓度自然移动的情形。例如一滴蓝墨水滴在清水中,其之逐渐散开即为"扩散"的一例。
  
  29、Microthrowing Power 微分布力
  是指从镀液所镀出的镀层,在微观下是否有能力将底金属表面粗糙予以填补整平的能力。此种"镀液"本身对被镀面细部的整平能力,称之为"微分布力"或"整平力"(Levelling Power)。由图中可知此种整平力,又可再分成(a)负整平,(b)零整平,及(c)正整平等三种。而此种微分力的好坏,端赖镀液中有机添加剂的能耐如何,属于一种长期小心研究而得的专密化学品。
  
  30、Periodic Reverse (PR)Current周期性反电流
  在电镀作业中,习惯将被镀件置于阴极之负电流状态下,一向视之为"正常"。若将电源供应的方向定时加以改变,亦即将被镀件瞬间改成"正电流",而暂处于阳极的溶蚀状态,与传统习惯相反,故将此种被镀件在不镀反蚀的情况,称之为"反电流"。某些电解制程之操作,如碱性槽液脱脂即可采用"周期性反电流"法,在氢气及氧气交互发泡下,对镀件表面的污垢产生磨擦揭除的作用,称为PR电流法。PR法除大多用于电解清洗外,亦可用于各种镀铜及镀银上。至于其反电流时间的长短,则可由实验设定之。其作用是将高电流区的突出镀点予以少许的反蚀,以达整平及拋光的效果。
  
  31、Overpotantial (Overvoltage)过电位,过电压
  这要先从电极电位(Electrode Potantial)说起,假设将两铜棒插入常温静止的硫酸铜镀液中,在不加外电压下,两棒均可能会发生溶入镀液的情形:Cu ——————->Cu2++2e- ——————-(1)但同时也可能皆有铜离子登陆或积在该二铜棒上:Cu2++2e——————-> Cu ————————-(2)上述两反应中,当(1)式比(2)式要快,或者说成溶解得较多而沉积较少时,则铜棒将呈现略"负",而镀液将呈现略"正"的电位(以氢电极之电位之0)。当到达(溶解与沉积)之平衡时,两者之间微小的电位差异谓之"电极电位"。在此种铜棒与镀液系统中,若将铜棒接通直流的外电源时,则会打破原来的各自平衡,而两铜棒将出现一负一正的阴阳两极。此种外加电压即称为"过电压"或"超电压"。当然此种外加电压还至少要能克服各种障碍(如镀液的内电阻,反应起始的活化能等),才能产生电镀的动作。其实广义上Overpotntial、Overvoltage与 Polarization (极化)三者是相同的,只是为了避免混淆而较少相提并论罢了。
  
  32、Plating镀
  在电路板工业中,此字可指不使用电流的"无电镀"(Electroless)制程;如无电铜、无电镍、无电锡铅等自我催化还原式的化学沉积法。也更常指特定槽液使用电流的电解电镀(Electrolytic plating或Electrolytic deposition)。一般单独使用此字Plating但却未进一步指明时,则多指后者之"电镀"。
  
  33、Polarity电极性
  指电路中决定电流方向的极性,电流的定义是由"正极"流到"负极",此二种极性即为其Polarity。
  
  34、Polarization分极,极化
  在执行电工作业时,需将插头插入电源插座中,以达到电流的连通及作功。为了防止其极性插反插错,而造成电机或机械上的损失,特将插头与插座之两极做成不对称的形式,使其只能有一种方式可以插接以防错误,称之为"分极"(Polarization)又在电解或电镀槽中,其阴阳两极若自外电路将之相连,则将呈现平衡状态而无电流也无作用产生。若故意施加一外电压,强迫使阳极溶进槽液中,且促使槽液中的金属离子镀在阴极上,这种打破平衡,并使得该系统被强迫划分成为阴阳两极,其之"外加电位"(External Polential)称为"极化",亦称为过电位Overpotential或过电压 Overvoltage。而若欲使电流能顺利在系统中流通,则必须要克服其起始能量的障碍,故应具备"活化极化" (Activation Polarization)。另外须克服阴极附近扩散层中,因浓度稀薄而出现电流障碍的"浓度极化"(Concentration Polarization),以及槽液本身电阻之"电阻极化"(Resistance Polarization)等。此三者之总和,即为维持稳定电流而起码应具备的"总极化"或"外加电位"。
  
  35、Post Separation后期分离,事后分离
  孔壁所镀上之化学铜层与两次电镀铜层,在制作的当时甚至在电路板完工时,皆表现出良好附着力(Adhesive Force)。但经过一段时间的老化,或在下游组装焊接后,有时竟会发生孔铜壁与内层孔环之间的分离行为,特称为Post Separation。
  
  36、Pulse Plating脉冲电镀法
  电镀进行时,其电压电流是刻意采用瞬间忽大忽小变化,或其至变成反电流,如同脉搏在跳动一样。通常在正统电镀进行时系使用固定的直流电,在阴极表面会有一层浓度较稀的扩散层(Diffusion Layer)存在,对镀层的生长速率及品质都有妨碍。若改采脉冲式电流时,则可减少扩散层的影响,而能改变镀层的结构,不过这种变化电流的电镀法,经数十年来的研究及试做,目前仍在实验阶段,效果不易掌握,仍难以进行商业化量产。
  
  37、Ripple纹波
  是指整流器所输出之电流,当其电压非常平稳已近似直流电,在其电压表示之直线图中,仍杂有少部份波动曲线的不稳定成份,此乃由于输入于整流器的交流电中,已有各种谐波(Harmorics)存在之故。其解决之道可在整流器中加装各种控制器,以减少所输出直流中的纹波成份。而提升电镀的品质。通常良好的整流器,应将其纹波控制在1% 以下。
  
  38、Small Hole小孔
  以目前的技术水准而言,孔径在15 mil以下者应可称为"小孔"。
  
  39、Voltage Efficiency电压效率
  是指在某一电化学反应(如电镀)进行过程中,其"反应平衡电压"与"槽液电压"(Bath Voltage)之间的比值,以百分比表示谓之"电压效率"。C.D. Current Density ; 电流密度(是电镀或阳极处理的基本操作条件)
  
  湿式制程与PCB表面处理
  
  1、Abrasives 磨料,刷材
  对板面进行清洁前处理而磨刷铜面所用到的各种物料,如聚合物不织布,或不织布掺加金刚砂,或其砂料之各型免材,以及浮石粉(Pumice Slurry)等均称之为 Abrasives 。不过这种掺和包夹砂质的刷材,其粉体经常会着床在铜面上,进而造成后续光阻层或电镀层之附着力与焊锡性问题。附图即为掺和有砂粒的刷材纤维其之示意情形。
  
  2、Air Knife 风刀
  在各种制程联机机组的出口处,常装有高温高压空气的刀口以吹出风刀,可以快速吹干板面,以方便取携及减少氧化的机会。
  
  3、Anti-Foaming Agent 消泡剂
  PCB制程如干膜显像液的冲洗过程中,因有多量有机膜材溶入,又在抽取喷洒的动作中另有空气混进,而产生多量的泡沫,对制程非常不便。须在槽液中添加降低表面张力的化学品,如以辛醇 (Octyl Alcohol) 类或硅树脂 (Silicone) 类等做为消泡剂,减少现场作业的麻烦。但含硅氧化合物阳离子接口活性剂之硅树脂类,则不宜用于金属表面处理。因其一旦接触铜面后将不易洗净,造成后续镀层附着力欠佳或焊锡性不良等问题。
  
  4、Bondability结合层
  接着层:指待结合(或接着)的表面,必须保持良好的清洁度,以达成及保持良好的结合强度,谓之"结合性"。
  
  5、Banking Agent 护岸剂
  是指在蚀刻液中所添加的有机助剂,使其在水流冲刷较弱的线路两侧处,发挥一种皮膜附着的作用,以减弱被药水攻击的力量,降低侧蚀(Cmdercut)的程度,是细线路蚀刻的重要条件,此剂多属供货商的机密。
  
  6、Bright-Dip 光泽浸渍处理
  是一种对金属表面轻微咬蚀,使呈现更平滑光亮者,其槽液湿式处理谓之。
  
  7、Chemical Milling 化学研磨
  是以化学湿式槽液方法,对金属材料进行各种程度的腐蚀加工,如表面粗化、深入蚀刻,或施加精密的特殊阻剂后,再进行选择性的蚀透等,以代替某些机械加工法的冲断冲出(Punch)作业,又称之为 Chemical Blanking 或Photo Chemical Machining(PCM)技术,不但可节省昂贵的模具费用及准备时间,且制品也无应力残存的烦恼。
  
  8、Coat,Coating 皮膜,表层
  常指板子外表所做的处理层而言。广义则指任何表面处理层。
  
  9、Conversion Coating 转化皮膜
  是指某些金属表面,只经过特定槽液简单的浸泡,即可在表面转化而生成一层化合物的保护层。如铁器表面的磷化处理 (Phosphating),或锌面的铬化处理(Chromating),或铝面的锌化处理 (Zincating)等,可做为后续表面处理层的"打底"(Striking),也有增加附着力及增强耐蚀的效果。
  
  10、Degreasing 脱脂
  传统上是指金属物品在进行电镀之前,需先将机械加工所留下的多量油渍予以清除,一般常采用有机溶剂之"蒸气脱脂"(Vapor Degreasing)法,或乳化溶液之浸泡脱脂。不过电路板制程并无脱脂的必要,因所有加工过程几乎都没有碰过油类,与金属电镀并不相同。只是板子前处理仍须用到"清洁"的处理,在观念上与脱脂并不全然一样。
  
  11、Etch Factor 蚀刻因子、蚀刻函数
  蚀铜除了要做正面向下的溶蚀之外,蚀液也会攻击线路两侧无保护的铜面,称之为侧蚀(Undercut),因而造成如香菇般的蚀刻缺陷,Etch Factor即为蚀刻品质的一种指针。Etch Factor一词在美国(以 IPC 为主)的说法与欧洲的解释恰好相反。美国人的说法是"正蚀深度与侧蚀凹度之比值",故知就美国人的说法是"蚀刻因子"越大品质越好;欧洲的定义恰好相反,其"因子"却是愈小愈好。很容易弄错。不过多年以来,IPC 在电路板学术活动及出版物上的成就,早已在全世界业界稳占首要地位,故其阐述之定义堪称已成标准本,无人能所取代。
  
  12、Etchant 蚀刻剂,蚀刻
  在电路板工业中是专指蚀刻铜层所用的化学槽液,目前内层板或单面板多已采用酸性氯化铜液,有保持板面清洁及容易进行自动化管理的好处(单面板亦有采酸性氯化铁做为蚀刻剂者)。双面板或多层板的外层板,由于是以锡铅做为抗蚀阻剂,故需蚀铜品质也提高很多。
  
  13、Etching Indicator 蚀刻指针
  是一种重视蚀刻是否过度或蚀刻不足的特殊楔形图案。此种具体的指针可加设在待蚀的板边,或在操作批量中刻意加入数片专蚀的样板,以对蚀刻制程进行了解及改进。
  
  14、Etching Resist 抗蚀阻剂
  指欲保护不拟蚀掉的铜导体部份,在铜表面所制作的抗蚀皮膜层,如影像转移的电着光阻、干膜、油墨之图案,或锡铅镀层等皆为抗蚀阻剂。
  
  15、Hard Anodizing 硬阳极化
  也称为"硬阳极处理",是指将纯铝或某些铝合金,置于低温阳极处理液之中(硫酸 15%、草酸 5%,温度 10℃以下,冷极用铅板,阳极电流密度为 15ASF),经 1 小时以上的长时间电解处理,可得到 1~2 mil 厚的阳极化皮膜,其硬度很高(即结晶状 A12O3), 并可再进行染色及封孔,是铝材的一种良好的防蚀及装饰处理法。
  
  16、Hard Chrome plating 镀硬铬
  指耐磨及滑润工业用途所镀之厚铬层而言。一般装饰性镀铬只能在光泽镍表面镀约 5分钟,否则太久会造成裂纹。硬铬则可长达数小时之操作,传统镀液成份为CrO3250 g/1+H2SO410%,但需加温到 60℃,阴极效率低到只有 10%而已。因而其它的电量将产生大量的氢气而带出多量由铬酸及硫酸所组成的有害浓雾,并使得水洗也形成大量黄棕色的严重废水污染。虽然废水需严格处理而使得成本上升,但镀硬铬是许多轴桫或滚筒的耐磨镀层,故乃不可完全废除
  
  17、Mass Finishing 大量整面、大量拋光
  许多小型的金属品,在电镀前须要小心去掉棱角,消除刮痕及拋光表面,以达成最完美的基地,镀后外表才有最好的美观及防蚀的效果。通常这种镀前基地的拋光工作,大型物可用手工与布轮机械配合进行。但小件大量者则须依靠自动设备的加工,一般是将小件与各种外型之陶瓷特制的"拋光石"(Abrasive Media)混合,并注入各式防蚀溶液,以斜置慢转相互磨擦的方式,在数十分钟内完成表面各处的拋光及精修。做完倒出分开后,即可另装入滚镀槽中(Barrel)进行滚动的电镀。
  
  18、Microetching 微蚀
  是电路板湿制程中的一站,目的是为了要除去铜面上外来的污染物,通常应咬蚀去掉 100μ-in 以下的铜层,谓之"微蚀"。常用的微蚀剂有"过硫酸钠"(SPS)或稀硫酸再加双氧水等。另外当进行"微切片"显微观察时,为了在高倍放大下能看清各金属层的组织起见,也需对已拋光的金属截面加以微蚀,而令其真相得以大白。此词有时亦称为 Softetching 或 Microstripping。
  
  19、Mouse Bite 鼠啮
  是指蚀刻后线路边缘出现不规则的缺口,如同被鼠咬后的啮痕一般。此为近来在美商 PCB 业界流行的非正式术语。
  
  20、Overflow 溢流
  槽内液体之液面上升越过了槽壁上缘而流出,称为"溢流"。电路板湿式制程(Wet Process)的各水洗站中,常将一槽分隔成几个部份,以溢流方式从最脏的水中洗起,可经过多次浸洗以达省水的原则。
  
  21、Panel Process全板电镀法
  在电路板的正统缩减制程(Substractive Process)中,这是以直接蚀刻方式得到外层线路的做法,其流程如下:PTH-全板镀厚铜至孔壁1 mil-正片干膜盖孔-蚀刻-除膜得到裸铜线路的外层板.此种正片做法的流程很短,无需二次铜,也不镀铅锡及剥锡铅,的确轻松不少。但细线路不易做好,其蚀刻制程亦较难控制。
  
  22、Passivation钝化,钝化处理
  是金属表面处理的术语,常指不锈钢对象浸于硝酸与铬酸的混合液中,使强制生成一层薄氧化膜,用以进一步保护底材。另外也可在半导体表面生成一种绝缘层,而令晶体管表面在电性与化学性上得到绝缘,改善其性能。此种表面皮膜的生成,亦称为钝化处理。
  
  23、Pattern Process线路电镀法
  是减缩法制造电路板的另一途径,其流程如下:PTH——>镀一次铜——>负片影像转移——>镀二次铜——>镀锡铅——>蚀刻——>褪锡铅——>得到外层裸铜板.这种负片法镀二次铜及锡铅的Pattern Process,目前仍是电路板各种制程中的主流。原由无他,只因为是较安全的做法,也较不容易出问题而已。至于流程较长,需加镀锡铅及剥锡等额外麻烦,已经是次要的考虑了。
  
  24、Puddle Effect水坑效应
  是指板子在水平输送中,进行上下喷洒蚀刻之动作时,朝上的板面会积存蚀刻液而形成一层水膜,妨碍了后来所喷射下来新鲜蚀刻液的作用,及阻绝了空气中氧气的助力,造成蚀刻效果不足,其蚀速比起下板面之上喷要减慢一些,此种水膜的负作用,就称为Puddle Effect。
  
  25、Reverse Current Cleaning反电流(电解)清洗
  是一种将金属工作物挂在清洗液中的阳极,另以不锈钢板当成阴极,利用电解中所产生的氧气,配合金属工作物在槽液中的溶解(氧化反应),而将工作物表面清洗干净,这种制程亦可称做"Anodic Cleaning"阳极性电解清洗;是金属表面处理常用的技术。
  
  26、Rinsing水洗,冲洗
  湿式流程中为了减少各槽化学品的互相干扰,各种中间过渡段,均需将板子彻底清洗,以保证各种处理的品质,其等水洗方式称为Rinsing。
  
  27、Sand Blast喷砂
  是以强力气压携带高速喷出的各种小粒子,喷打在物体表面上,做为一种表面清理的方法。此法可对金属进行除锈,或除去难缠的垢屑等,甚为方便。所喷之砂种有金钢砂、玻璃砂、胡桃核粉等。而在电路板工业中,则以浮石粉(Pumice)另混以水份,一同喷打在板子铜面上进行清洁处理。
  
  28、Satin Finish缎面处理
  指物体表面(尤指金属表面)经过各式处理,而达到光泽的效果。但此处理后并非如镜面般(Mirror like)的全光亮情形,只是一种半光泽的状态。
  
  29、Scrubber磨刷机、磨刷器
  通常是指对板面产生磨刷动作的设备而言,可执行磨刷、拋光、清除等工作,所用的刷子或磨轮等皆有不同的材质,亦能以全自动或半自动方式进行。
  
  30、Sealing封孔
  铝金属在稀硫酸中进行阳极处理之后,其表面结晶状氧化铝之"细胞层"均有胞口存在,各胞口可吸收染料而被染色。之后须再浸于热水中,使氧化铝再吸收一个结晶水而令体积变大,致使胞口被挤小而将色泽予以封闭而更具耐久性,称之为Sealing。
  
  31、Sputtering溅射
  即阴极溅射 Cathodic Sputtering之简称,系指在高度真空的环境及在高电压的情况下,处于阴极的金属外表原子将被迫脱离本体,并以离子形态在该环境中形成电浆,再奔向处在阳极的待加工对象上,并累积成一层皮膜,均匀的附着在工作物表面,称为阴极溅射镀膜法,是金属表面处理的一种技术。
  
  32、Stripper剥除液,剥除器
  指对金属镀层与有机皮膜等之剥除液,或漆包线之外皮剥除器等。
  
  33、Surface Tension表面张力
  指液体的表面所具有一股分子级的内向吸引力,即内聚力的一部份。此种表面张(缩)力在液体与固体的交界面处,会有阻止液体扩散的趋势。就电路板湿制程前处理的清洁槽液而言,首先即应降低其表面张(缩)力,使板面及孔壁容易达到润湿的效果。
  
  34、Surfactant表面润湿剂
  湿制程之各种槽液中,所添加用以降低表面张力的化学品,以协助通孔之孔壁产生润湿作用,故又称为"润湿剂"(Wetting Agent)。
  
  35、Ultrasonic Cleaning超音波清洗
  在某种清洗液中施加超音波振荡的能量,使产生半真空泡 (Cavitation),并利用这种泡沫的磨擦力及微搅拌的力量,令待清洗物品之各死角处,也同时产生机械性的清洗作用,此法常用在电路板后续组装板之清洗上(详见电路板信息杂志第67期之专文)。
  
  36、Undercut Undercutting侧蚀
  此字原义是指早期人工伐木时,以斧头自树根两侧处,采上下斜口方式将大树逐渐砍断,谓之 Undercut 。在 PCB 中是用于蚀刻制程,当板面导体在阻剂的掩护下进行喷蚀时,理论上蚀刻液会垂直向下或向上进行攻击,但因药水的作用并无方向性,故也会产生侧蚀,造成蚀后导体线路在截面上,显现出两侧的内陷,称为Undercut。但要注意只有在油墨或干膜掩护下,直接对铜面蚀刻所产生的侧蚀才是真正的Undercut。一般 Pattern Process在镀过二次铜及锡铅后,去掉抗镀阻剂再行蚀刻时,则可能有二次铜与锡铅自两侧向外增长出,故完成蚀刻后侧蚀部份只能针对底片上线宽,而计算其向内蚀入的损失,不能将镀层向外增宽部份也计入。电路板制程中除了铜面蚀刻有此缺陷外,在干膜的显像过程中也有类似这种侧蚀的情形。
  
  37、Water Break水膜破散,水破
  当板面油污被清洗得很干净时,浸水后将在表面形成一层均匀的水膜,能与板材或铜面保持良好的附着力(即接触角很小)。通常直立时可保持完整的水膜约 5~10秒左右。清洁的铜面上在水膜平放时可维持 10~30秒而不破。至于不洁的板面,即使平放也很快就会出现"水破",呈现一种不连续而各自聚集的"Dewetting"现象。因为是不洁的表面与水体之间的附着力,不足以抗衡水体本身的内聚力所致。这种检查板面清洁度的简便方代,称为 Water Break法。
  
  38、Wet Blasting湿喷砂
  是金属表面一种物理式的清洁方法,系在高压气体的驱动下,迫使湿泥状的磨料 (Abrasive)喷打在待清洁的表面,用以去除污物的做法。电路板制程中曾用过的湿喷浮石粉(Pumice)技术,即属此类。
  
  39、Wet Process湿式制程
  电路板之制造过程有干式的钻孔、压合、曝光等作业;但也有需浸入水溶液中的镀通孔、镀铜,甚至影像转移中的显像与剥膜等站别,后者皆属湿式制程,原文称为Wet Process。
  
  液态感光防焊与干膜防焊制程
  
  1、Curtain Coating 濂涂法
  是一种电路板面感光绿漆涂装的自动施工法,涂料为已调稀的非水溶性绿漆油墨,施工时此种绿漆会自一长条形开口处,以水濂方式连续流下,与自动输送前进中的板面垂直交会,而在板面上涂满一层均匀的漆膜,待其溶剂逸走半硬化后,再翻转板身及做另一面的涂布,当两面都完成后,即可进行感光法的影像转移。这种"濂涂法"并非电路板业之新创,早年亦曾多用于木制家俱的自动涂装,只是现在转移阵地另辟用场而已。
  
  2、Encroachment沾污,侵犯
  在 PCB业是专指板进行绿漆加工时,在不该沾漆的焊垫表面(指插孔的孔环孔壁或SMT的板面焊垫等),意外出现绿漆痕迹时,将严重影响下游组装的焊锡性,特称之为Encroachment。
  
  3、Liquid Photoimagible Solder Mask,LPSM 液态感光防焊绿漆
  为板面所用防焊绿漆一种,由于细线板子日多,早期的网版印刷烘烤型的环氧树脂绿漆已无法适应,代之而起的是"空版"(或只留挡墨点的网版)满网的印刷对感光绿漆施工。经刮印及半硬化后,即可直接用底片进行精准之对位及曝光,再经显像与硬化后即可得到位置准确的绿漆。这种现役的 LPSM 经数年来量产的考验,其品质已经非常良好,现已成为各式防焊膜中的主流。
  
  4、Post Cure后续硬化,后烤
  在电路板工业中,液态感光绿漆或防焊干膜,在完成显像后还需做进一步的硬化,以增强其物性之耐焊性质。这种再次补做的工作就是"后续硬化"。另当聚亚醯胺材质的多层板在完成压合后,为使其具有更完整的聚合反应起见,还须放回烤箱中继续2~4小时的后烤,也称为Postcure。
  
  5、Roller Coating滚动涂布法
  利用辊轮将绿漆或"感光式线路油墨"涂布在板面上,然后再进行半硬化曝光及显像的工作,此法对于价位低产量又很大的板子甚为有利。
  
  6、Solder Mask(S/M)绿漆,防焊膜
  原文术语中虽以 Solder Mask 较为通用,但却仍以 Solder Resist 是较正式的说法。所谓防焊膜,是指电路板表面欲将不需焊接的部份导体,以永久性的树脂皮膜加以遮盖,此层皮膜即称之为S/M。绿漆除具防焊功用外,亦能对所覆盖的线路发挥保护与绝缘作用。
  
  7、Spray Coating喷着涂装,喷射涂装
  利用压缩空气将液体涂料自小口喷出,以细小的雾化粒子射涂在待处理的对象表面,类似"喷漆"称为"Spray Coating"。亦可在喷口处施加静电装置,使喷出的雾点带有静电,并在处理件本身也施加相反的静电,使直接吸附。不但可节省涂料,减少污染,并可令死角处也能分布均匀,称之为"静电喷涂法"。电路板的新式绿漆加工也有采用此法者。
  
  8、Tackiness黏着性,黏手性
  在板面涂布液态感光绿漆(LPSM)后 (如空网印刷、垂流、喷涂、垂直刮涂、与滚涂等方法),还要预烤以待曝光。这种预烤漆面在强光照射下是否仍会沾黏底片的性质称为Tackiness。又下游各SMD焊垫上印着锡膏与放置零件后,在等待红外线与热风熔焊前,锡膏必须暂时呈现黏贴定位的功能,也称为Tackiness。
  
  焊接原理与焊锡性
  
  1、Abietic Acid松脂酸
  是天然松香(Rosin)的主要成份,占其重量比的34%。在焊接的高温下,此酸能将铜面的轻微氧化物或钝化物予以清除,使得清洁铜面可与熔锡产生"接口合金共化"(IMC)而完成焊接。此松脂酸在常温中很安定,不会腐蚀金属。
  
  2、Angle of Contack 接触角
  广义是指液体落在固体表面时,其边缘与固体外表在截面上所形益的夹角。在PCB 的狭义上是指焊锡与铜面所形成的Θ角,又称之为双反斜角(Dihedrel Angle)或直接称为 Contact Angle。
  
  3、Blow Hole 吹孔
  指完工的 PTH 铜壁上,可能有破洞(Void 俗称窟窿)存在。当板子在下游进行焊锡时,可能会造成破洞中的残液在高温中迅速气化而产生压力,往外向孔中灌入的熔锡吹出。冷却后孔中之锡柱会出现空洞。这种会吹气的劣质 PTH,特称为"吹孔"。吹孔为 PCB 制程不良的表征,必须彻底避免才能在业界立足。
  
  4、Brazing 硬焊
  是指采用含银的铜锌合金焊条,其焊温在425~870℃ 下进行熔接(Welding)方式,比一般电子工业常见软焊或焊(Soldering),在温度及强度方面都比较高。
  
  5、Cold Solder Joint 冷焊点
  焊锡与铜面间在高温焊接过程中,必须先出现 Cn Sn 的"接口合金共化物"(IMC)层,才会出现良好的沾锡或焊锡性(Solderability)。当铜面不洁、热量不足,或焊锡中杂质太多时,都无法形成必须的 IMC(Eta Phase),将出现灰暗多凹坑不平。且结构强度也不足的焊点,系由焊锡冷凝而形成,但未真正焊牢的焊点,特称为"冷焊点",或俗称冷焊。
  
  6、Contact Angle 接触角
  一般泛指液体与固接触时,其交界边缘,在液体与固体外表截面上,所呈现的交接角度,谓之 Contact Angle。
  
  7、Dewetting 缩锡
  指高温熔融的焊锡与被焊物表面接触及沾锡后,当其冷却固化即完成焊接作用得到焊点(Solder Joint)。正常的焊点或焊面,其已固化的锡面都应呈现光泽平滑的外观,是为焊锡性(Solderability)良好的表征。所谓 Dewetting 是指焊点或焊面呈高低不平、多处下陷,或焊锡面支离破碎甚至曝露底金属,或焊点外缘无法顺利延伸展开,截面之接触角大于 90 度者,皆称为"缩锡"。其基本原因是底金属表面不洁(有氧化物或其它污染),造成与焊锡之间不易形成"接口合金共化物"(如Cu6Sn5 之 Eta phase IMC 即是),难以亲锡,无法维持焊锡的均匀覆盖所致。
  
  8、Dihedral Angle 双反斜角
  是指焊点或焊面外缘在截面上左右两侧的接触角,有如喷射机之双反斜翅膀,称为"双反斜角"。此角度愈小时,表示其"沾锡性"愈好。
  
  9、Eutetic Composition 共融组成
  合金中的组成份在某一定比例时,其熔点(M.P.; Melting Point)最低,称之为"共融组成"。如锡铅合金在63/37比例时,其熔点仅183℃,且直接由固态熔化成液态,中间并未出现浆态;反之亦然。故此63/37比例特称之为"共融组成",而183℃即其共融点(Eutetic Point)。
  
  10、Finite Element Method有限要素分析法
  是一种对焊点(Joint)可靠度与故障的分析法,为利用计算机与数据模式的分析工具。可将焊件之结构以微分方式划分成许多受力面与受力点,在计算机协助下逐一仔细找出故障的可能原因。下左图即为一鸥翼脚焊点的FEM分析图。左图为一外围有球脚的P-BGA,在板面上焊接后的FEM细分图,此件共有2492个平面应变要素,与7978个节点应变要素 (Node Strain Element)。
  
  11、Meniscograph Test 弧面状沾锡试验
  是针对待焊物表面沾锡性好坏所做的一种试验,如右图所示;取一金属线使其沉入表面清洁的熔锡池中。若金属线的沾锡性不错时,则会产生良好的沾锡力(Wetting Force),而在交界处会将锡拉起,呈现弧状上升的"弯月形"(Meniscus),即表示其焊锡性良好。可再以"弧面沾锡仪"(Meniscometer)的激光束去观察所带起的弯弧的高度,再按已存在计算机中的记忆资料,求出接触角(Contact Angle θ,或称沾锡角Wetting Angle),即可判断出零件脚沾锡品质的好坏。不过此法现已不如"沾锡天平"法(Wetting Balance)来的更精确。按荷兰籍焊接专家 R.J.Klein Wassink(曾任职菲利浦公司 30 年以上,为全世界 SMT 的启蒙者)之名著 Soldering In Electronics(2nd Ed.,1989)P.332所载,在沾锡动作接触 3~4 秒后可测得 θ 角,其代表之意义如表内所示。
  
  12、Meniscus 弯月面,上凹面
  原指毛细管中之水面,从截面所观察到的上凹情形。引伸到"焊锡性"的品质时,则是指焊锡与被焊物表面之接触角。当其所呈现角度很小,使被焊物表面之焊锡前缘,具有扩张与前进的趋势,则其"焊锡性"将会很好。利用此"弯月面"的原理,进一步地去测试被焊物在"焊锡性"品质上的好坏,其方法称Meniscograph。
  
  13、Non-Wetting 不沾锡
  在高温中以焊锡(Solder)进行焊接(Soldering)时,由于被焊之板子铜面或零件脚表面等之不洁,或存有氧化物、硫化物等杂质,使焊锡无法与底金属铜之间形成必须的"接口合金化合物"(Intermatallic Compound,IMC,系指Cu6Sn5 ),此等不良外表在无法"亲锡"下,致使熔锡本身的内聚力大于对"待焊面 "的附着力,形成熔锡聚成球状无法扩散的情形。就整体外表而言,不但呈现各地局部聚集不散而高低不平的情形,甚至会曝露底铜,这比"Dewtting 缩锡" 更为严重,称之为"不沾锡"。
  
  14、Solder焊锡
  是指各种比例的锡铅合金,可当成电子零件焊接(Soldering)所用的焊料。其中以 63/37 锡铅比的 Solder 最为电路板焊接所常用。因为在此种比例时,其熔点最低(183℃),且系由"固态"直接熔化成"液态",反之固化亦然,其间并未经过浆态,故对电子零件的连接有最多的好处。除此之外尚有80/20、90/10等熔点较高的焊锡,以配合不同的用途。 注意当 "焊" 字从金旁时,专指焊锡合金之本体金属而言,若从火部的 "焊"时,则系针对焊接的操作之谓,不宜混一谈。
  
  15、Solderability焊锡性,可焊性
  各种零件引脚或电路板焊垫等金属体,其等接受焊锡所发挥的焊接能力如何?谓之焊锡性。无论电路板或零件,其焊锡性的好坏都是组装过程所须最先面对的问题,焊锡性不良的PCB,其它一切的品质及特点都将付诸空谈。
  
  16、Surface Energy表面能
  任何物质在进行化学反应前,其表面将应具有某种活性程度,或参与化学反应能力强弱的一种表示数值,谓之"表面能"。例如清洁新鲜的铜面,其在真空中的表面能可高达1265 dyne/cm,但若将该新鲜的铜放置在空气中 2小时,因表面产生各种铜的污化物或钝化物后,其"表面能"将下降至25 dyne/cm,必须仰赖助焊剂的清洁作用,才能完成焊接所需的良好沾锡 (Wetting)品质。
  
  17、Vacuoles 焊洞
  通孔中可插焊或直接涌锡填锡而成锡柱体,当焊板远离锡波逐渐冷却之际,其填锡体之冷却固化是从顶部开始的。因板材是不良导热体,故下板面擦过锡波时其温度要高于离锡波稍远的上板面。故孔内锡柱是先自顶部固化后,其次才轮到底部固化,锡柱中段最后才会固化。因而在四周上下已经硬化,其中心继续冷固收缩时,经常会出现真空式无害的空洞,称为"Vacuoles"。
  
  18、Wetting Balance沾锡天平
  是一种测量零件脚或电路板"焊锡性"好坏的精密仪器。试验中须将试样夹在触动敏感的夹具上,再举起小锡池以迎合固定的测试点,并使测区得以沉没于锡池中。在扣除浮力后即可测得试样"沾锡力量"的大小,及"沾锡时间"的长短。即使少许"力量"的差异,亦可从此种仪器上忠实测出,故称为"沾锡天平"。(详见电路板信息杂志第二十六期之专文)
  
  19、Wetting沾湿,沾锡
  清洁的固体表面遇有水份沾到时,由于其间附着力较大故将向四面均匀扩散,称为Wetting。但若表面不洁时,则附着力将变小且亲和性不足,反使得水的内聚力大于附着力,致令水份聚集不散。凡在物体表面出现局部聚拢而不连续的水珠者,称"不沾湿"Dewetting。此种对水份"沾湿"的表达,若引伸到电路板的焊锡性上,即成为"沾锡"与"沾锡不良"(或缩锡)之另一番意义。IMC Intermatallic Compound ; (金属) 接口合金共化物如 Cu6Sn5 Cu3Sn即为铜锡之间的两种合金共化物,此外尚有多种其它金属间的IMC存在
  
  线路板可靠性与微切片
  
  1、Abrasion Resistance耐磨性
  在电路板工程中,常指防焊绿漆的耐磨性。其试验方法是以 1 k g 重的软性砂轮,在完成绿漆的IP-B-25样板上旋转磨擦 50 次,其梳型电路区不许磨破见铜(详见电路板信息杂志第 54 期P.70),即为绿漆的耐磨性。某些规范也对金手指的耐磨性有所要求。又,Abrasive是指磨料而言,如浮石粉即是。Accelerrated Test(Aging)加速试验,加速老化也就是加速老化试验(Aging)。如板子表面的熔锡、喷锡或滚锡制程,其对板子焊锡性到底能维持多久,可用高温高湿的加速试验,仿真当板子老化后,其焊锡性劣化的情形如何,以决定其品质的允收与否。此种人工加速老化之试验,又称为环境试验,目的在看看完工的电路板(已有绿漆)其耐候性的表现如何。新式的"电路板焊锡性规范"中(ANSI/J- STD-003,本刊 57 期有全文翻译)已有新的要求,即高可靠度级CLASS 3的电路板在焊锡性(Solderability) 试验之前,还须先进行 8 小时的"蒸气老化"(Steam Aging),亦属此类试验。
  
  2、Accuracy 准确度
  指所制作的成绩与既定目标之间的差距。例如所钻成之孔位,有多少把握能达到其"真位"(True Position)的能力。
  
  3、Adhesion 附着力
  指表层对主体的附着强弱而言,如绿漆在铜面,或铜皮在基材表面,或镀层与底材间之附着力皆是。
  
  4、Aging 老化
  指经由物理或化学制程而得到的产物,会随着时间的经历而逐渐失去原有的品质,这种趋向成熟或劣化的过程即称之"Aging"。不过在别的学术领域中亦曾译为"经时反应"。
  
  5、Arc Resistance 耐电弧性
  指在高电压低电流下所产生的电弧,当此电弧在绝缘物料表面经过时,物料本身对电弧抗拒力或忍耐力谓之"耐电弧性"。其耐力品质的好坏,端视其被攻击而造成碳化物导电之前,所能够抵抗的时间久暂而定。
  
  6、Bed-of-Nail Testing 针床测试
  板子进行断短路(Open/Short)电性试验时,需备有固定接线的针盘(Fixture),其各探针的安插,需配合板面通孔或测垫的位置,在指定之电压下进行电性测试,故又称为"针床测试"。这种电性测试的正式名称应为 Continuity Test,即 "连通性试验"。
  
  7、Beta Ray Backscatter 贝他射线反弹散射
  是利用同位素原子不安定特性所发出的 β 射线,使透过特定的窗口,打在待测厚的镀层样本上,并利用测仪中具有的盖氏计数管,侦测自窗口反弹散射回来部份的射线,再转成厚度的资料。一般测金层厚度仪,例如 UPA 公司的 Micro-derm 即利用此原理操作。
  
  8、Bond strength 结合强度
  指积层板材中,欲用力将相邻层以反向之方式强行分开时(并非撕开),每单位面积中所施加的力量(LB/in2)谓之结合强度。
  
  9、Breakdown Voltage 崩溃电压
  造成板子绝缘材料(如基材或绿漆)失效的各种高压中,引发其劣化之最低最起码之电压即为"崩溃电压"或简称"溃电压"。或另指引起气体或蒸气达到离子化的电压。由于"薄板"日渐流行,这种基材的特性也将要求日严。此词亦常称为Dielectric Withstanding Voltage。
  
  10、Burn-In 高温加速老化试验
  完工的电子产品,出货前故意放在高温中,置放一段时间(如 7 天),并不断测试其功能的劣化情形,是一种加速老化试验,也称为高温寿命试验。
  
  11、Chemical Resistance 抗化性
  广义是指各种物质对化学品的忍耐或抵抗能力。狭义是指电路板基材对于溶剂或湿式制程中的各种化学品,以及对助焊剂等的抵抗性或忍耐性。
  
  12、Cleanliness 清洁度
  是指完工的板子,其所残余离子多寡的情形。由于电路板曾经过多种湿式制程,一旦清洗不足而留下导电质的离子时,将会降低板材的绝缘电阻,造成板面线路潜在的腐蚀危机,甚至在湿气及电压下点引起导体间(包含层与层之间)的电子迁移(Electromigration)问题。因而板子在印绿漆之前必须要彻底清洗及干燥,以达到最良好的清洁度。按美军规 MIL-P-55110E 之要求,板子清洁度以浸渍抽取液(75%异丙醇+25%纯水)之导电度(Conductivity)表示,必须低于2×10-6 mho,应在2×106 ohm以,才算及格。
  
  13、Comb Pattern 梳型电路
  是一种"多指状"互相交错的密集线路图形,可对板面清洁度及绿漆绝缘性等,进行高电压测试的一种特殊线路图形。
  
  14、Corner Crack 通孔断角
  通孔铜壁与板面孔环之交界转角处,其镀铜层之内应力(Inner Stress)较大,当通孔受到猛烈的热冲击时 (如漂锡),在 Z 方向的强力膨胀拉扯之下,其孔角。其对策可从镀铜制程的延展性加以改善,或尽量降低板子的厚度,以减少Z 膨胀的效应。
  
  15、Crack 裂痕
  在 PCB 中常指铜箔或镀通孔之孔铜镀层,在遭遇热应力的考验时,常出现各层次的局部或全部断裂,谓之 Crack。其详细定义可见 IPC-RB-276 之图 7。
  
  16、Delamination 分层
  常指多层板的金属层与树脂层之间的分离而言,也指"积层板"之各层玻纤布间的分开。主要原因是彼此之间的附着力不足,又受到后续焊锡强热或外力的考验,而造成彼此的分离。
  
  17、Dimensional Stability 尺度安定性
  指板材受到温度变化、湿度、化学处理、老化(Aging) 或外加压力之影响下,其在长度、宽度、及平坦度上所出现的变化量而言,一般多以百分率表示。当发生板翘时,其 PCB 板面距参考平面(如大理石平台) 之垂直最高点再扣掉板厚,即为其垂直变形量,或直接用测孔径的钢针去测出板子浮起的高度。以此变形量做为分子,再以板子长度或对角线长度当成分母,所得之百分比即为尺度安定性的表征,俗称"尺寸安定性"。本词亦常指多层板制做中其长宽尺寸的收缩情形,尤其在压合后,内层收缩最大,通常经向约万分之四,纬向约万分之三左右。
  
  18、Electric Strength(耐)电性强度
  指绝缘材料在崩溃漏电以前,所能忍受的最高电位梯度(Potential Gradient,即电压、电位差),其数值与材料的厚度及试验方法都有关。此词另有同义字为(1)Dielectric Strength介质强度(2)Dielectric Break Down介质崩溃(3)Dielectric Withstand Voltage介质耐电压等,一般规范中的正式用语则以第三者为多。
  
  19、Entrapment 夹杂物
  指不应有的外物或异物被包藏在绿漆与板面之间,或在一次铜与二次铜之间。前者是由于板面清除不净,或绿漆中混有杂物所造成。后者可能是在一次铜表面所加附的阻剂,发现施工不良而欲"除去"重新处理时,可能因清除未彻底留下残余阻剂,而被二次铜所包覆在内,此情形最常出现于孔壁镀铜层中。另外当镀液不洁时,少许带电固体的粒子也会随电流而镀在阴极上,此种夹杂物最常出现在通孔的孔口,下二图所示即是典型镀铜的 Entrap。
  
  20、Fungus Resistance 抗霉性
  电路板面若有湿气存在时,可能因落尘中的有机物而衍生出霉菌,此等菌类之新陈代谢产物会有酸类出现,将有损板材的绝缘性。故板面的导体电路或所组装的零件等,都要尽量利用绿漆及护形漆(Conformal Clating ,指组装板外所服贴的保护层)予以封闭,以减少短路或漏电的发生。
  
  21、Hipot Test 高压电测
  为 High Potential Test 的缩写,是指采用比在实际使用时更高的直流电压,去进行仿真通电的电性试验,以检查出可能漏失的电流大小。
  
  22、Hole pull Strength 孔壁强度
  指将"整个孔壁"从板子上拉下所需的力量,也就是孔壁与板子所存在的固着强度。其试验法可将一金属线押进孔中并在尾部打弯,经并经填锡牢焊在通孔中。如此经 5次焊锡及 4 次解焊, 然后去将整个通孔壁连同填锡焊点,一并往板面垂直方向用力拉扯,直到松脱所呈现的力量为止。其及格标准为 500 PSI,此种耐力谓之孔壁强度。
  
  23、Ion Cleanliness 离子清洁度
  电路板经过各种湿制程才完成,下游组装也要经过助焊剂的处理,因而使得板面上带有许多离子性的污染物,必须要清洗干净才能保证不致造成腐蚀,而清洗干净的程度如何,须用到异丙醇(75%)与纯水(25%)的混和液去冲洗后,再测其溶液的电阻值或导电度,称为离子清洁度,而由于离子所造成板面的污染,则称为"离子污染"(Ionic Contamination)。
  
  24、Ionizable(Ionic)Contamination 离子性污染
  在电路板制造及下游组装的过程中,某些参与制程的化学品,若为极性化合物而又能溶于水时,则其在板上的残迹,将很可能会因吸潮而溶解成导电性的离子,进而造成板材的漏电构成危害。此类化学品最典型者即为:助焊剂中之活性物质、电镀液或蚀刻液之残余、指印汗水等。皆需彻底洗净以达到规范所要求的清洁度或绝缘度。
  
  25、Microsectioning 微切片法
  是对电路板之板材组织结构,与板材在各制程站的细部品质,以及零件组装情况等,在微观下做进一步深入了解的一种技术,是一种公认的品检方法。在正确拋光与小心微蚀后的切片试样上,于放大 100~400 倍下,各种细部详情均将一览无遗,而多数的问题根源也为之无所遁形。不过微切片正确判读所需的智识,却远超过其制作的技术,几乎是集材料、制程及品管等各种学理与规范于一身的应用。此种微切片法是源自金属材料,及矿冶科技的学问领域。
  
  26、Moisture and Insulation Resistance Test 湿气与绝缘电阻试验
  此试验原来的目的是针对电路板面的防焊绿漆,或组装板的护形漆(Conformal Coating)等所进行的加速老化试验,希望能藉助特殊的梳形线路,自其两端接点处施加外电压(100 VDC?0%)下,试验出此等皮膜"耐电性质"的可靠度如何,以 Class 2品级的板类而言,须在 50℃?℃ 及 90~98% RH的环境下,放置7天(168小时),且每8小时检测一次"绝缘电阻"。此试验现亦广用于板材、助焊剂,甚至锡膏等物料,以了解在恶劣环境中的可靠度到底如何。
  
  27、Omega Meter 离子污染检测仪
  待印绿漆的电路板,或完成装配与清洗的组装板,该整体清洁程度如何?是否仍带有离子污染物?其等情况都需加以了解,以做为清洗工程改善的参考。实际的做法是将待测的板子,浸在异丙醇(占25%)与纯水的混合液中,并使此溶液产生流动以便连续冲刷板面,而溶出任何可能隐藏的离子污染物,并以导电度计测出该测试溶液,是否因污染物不断溶入而使导电度增加,用以判断板子清洁程度。此种连续流动并连续监测溶液导电度的仪器,其商品之一的 Omega Meter 即为此中之佼佼者。此类商品另有Kenco公司的Omega 500型、Alpha Metal 公司的 Omega 600型,及杜邦的 Ionograph Meter 等。
  
  28、Peel Strength抗撕强度
  此词在电路板工业中,多指基板上铜箔的附着强度。其理念是指将基板上1吋宽的铜箔,自板面上垂直撕起,以其所需力量的大小来表达附着力的强弱。通常1 oz铜箔的板子其及格标准是 8 lb/in (1996年1月MIL-P-55110E之附录Spec. Sheet"4D"已将之降低为 4 lb/in)。此术语亦可用以表示各种电镀层的附着力。按中国国家标准(CNS)的正式译名应为"抗撕强度",其用词可谓望文生义简明清楚,无需再费唇舌解释。然而一般业者却不用此词,反而直接引用日文的"剥离强度",语意似有主客颠倒之嫌。在长期以讹传讹之下,劣币驱逐良币,正确术语竟不见流传,其是非不明的马虎随便,不免令人为之扼腕。
  
  29、Porosity Test疏孔度试验
  这是对镀金层所进行的试验。电路板金手指上镀金的目的是为了降低"接触电阻"(Contact Resistance),及防止氧化而保持其良好的接触性能。但却因镀层太薄而无法避免疏孔(Pores),致使底镀的镍层有机会与空气及水接近。又因黄金本身在化学性质上的高贵,在电化环境中会首先选择做为阴极,迫使底下的镍层扮演阳极的角色,造成底镍的加速腐蚀。其腐蚀的产物将会附着在疏孔附近,而降低了镀金层的优良接触性质,因而在品质规范中,常要求镀金层须通过Porosity Test。这种试验的做法很多,其中一种快速的做法,是取一张沾有镍试剂(Dimethyl-glyoxime)的试纸,将之打湿压在金手指表面,然后另取一条不锈钢片当成阴极压在试纸上,以试纸当成电解槽,将金手指当成阳极。在通入直流电一分钟后,有金层疏孔的底镍层,将被强迫氧化而产生镍盐,当其与"镍试剂"相遇时,将立即出现红色斑点。此试剂对镍浓度的敏感性可达一百六十万分之一,只要金层有疏孔存在,即逃不过这种试验的法力。不过疏孔度品质"允收标准",却始终不易制订。
  
  30、Reliability可靠度,信赖度
  是一种综合性的名词,表示当产品经过储存或使用一段时间后,对其品质再进行的一种"测量"(Measure),与新制品在交货时所实时测量的品质有所不同。换句话说,即是当产品在既定的环境中,历经一段既定时间的使用考验后,对其原有的"功能"(Function)是否仍可施展,或施展程度如何的一种测量。就电路板代表性规范 IPC-RB-276 而言,其 Class 3 即为"高可靠度"(简称Hi-Rel)之等级,如心脏调节器、飞航仪器或国防武器系统等电子品,其所用的电路板皆对Reliability相当讲究。
  
  31、Rotary Dip Test摆动沾锡试验
  是一种对电路板试样进行板面"焊锡性"试验的方法,按1992年 4 月所发布ANSI/J-STD-003 之"焊锡性规范",在其 4.2.2 节及图 4. 的说明中,可知这是一种慢速钟摆式运动的沾锡试验,但在国内业界中极少使用 (详见电路板资料杂志第57期 p.83)。
  
  32、Rupture迸裂
  对物料进行抗拉强度试验(Tensile Strength Test)或延伸率试验(Elongation Test)或展性试验时,其被拉裂的情形称为 Rupture(见电路板信息杂志第73期)
  
  33、Surface Insulation Resistance (SIR)表面绝缘电阻
  指电路板面各种导体之间,其基材表面的绝缘性质(程度)和何,是在特定的温湿环境中,又外加定额的电压下,长时间进行规律"定时性"的绝缘测试,而得到的一种监视制程或物料的"品质数据"。其实际的做法见 IPC-TM-650中2.6.3D的内容叙述。
  
  34、Tape Test撕胶带试验
  电路板上的各种镀层及有机涂装层,可利用一小段透明胶带在其表面上压附,然后瞬间用力的撕起,即可测知该等皮膜之附着力的品质如何。常用之透明胶带有 3M公司的#600及 #691等商品。
  
  35、Thermal Cycling热循环,热震荡
  当电路板或电路板组装品完成后,为测知其可靠度(Reliability)如何,可放置在高低温循环的设备中,刻意进行剧烈的热胀冷缩,以考验各个导体、零件,与接点的可靠度,是一种加速性环境试验,又称为Thermal Shock"热震荡"试验或"温度循环"试验。按 MIL-P-55110D 对完工 FR-4 材质的电路板,其一个完整周期的 Thermal Cycling试验,应按下述方式进行:室温中15分钟->2分内移入->高温125℃15分->2分内移入->室温15分->2分内移入->-65℃15分->2分内移入->室温15分55110D 规定 FR-4 板子须完成 100 个周期上述的试验后,其铜线路导体会发生劣化情形,从"电阻值"的增加上可以得知。 55110D 规定电阻值不能超过原测值的10%,且通孔切片后亦不能出现不允许的缺点。本法可考验出镀铜层及板材结构的耐用品质。请注意上述军规之E版,已将热循环中之保温部份取消,直接由高温125℃与低温-65℃之间振荡,条件更为苛刻。
  
  36、Traceability追溯性,可溯性
  军用电路板或 IPC-RB-276中所明定高可靠度的 Class 3板类,在制造过程中所用到的各种原物料、设备及检验过程等,其资料皆需详加纪录及保存,以备出品后三年中仍具可查考及可追踪的证据,谓之"追溯性"。
  
  37、Wear Resistance耐磨度,耐磨性
  此词与 Abrasion Resistance同义,有时也可称为Wearability。
  
  38、Weatherability耐候性
  指产品本身或表面处理层,在室外不同的环境中,由于各种保护措施之得宜,具有耐久能力减少功能故障的发生,称为耐候性。
  
  线路板PCB加工特殊制程
  
  1、Additive Process 加成法
  指非导体的基板表面,在另加阻剂的协助下,以化学铜层进行局部导体线路的直接生长制程(详见电路板信息杂志第 47 期 P.62)。电路板所用的加成法又可分为全加成、半加成及部份加成等不同方式。
  
  2、Backpanels,Backplanes 支撑板
  是一种厚度较厚(如 0.093",0.125")的电路板,专门用以插接联络其它的板子。其做法是先插入多脚连接器(Connector)在紧迫的通孔中,但并不焊锡,而在连接器穿过板子的各导针上,再以绕线方式逐一接线。连接器上又可另行插入一般的电路板。由于这种特殊的板子,其通孔不能焊锡,而是让孔壁与导针直接卡紧使用,故其品质及孔径要求都特别严格,其订单量又不是很多,一般电路板厂都不愿也不易接这种订单,在美国几乎成了一种高品级的专门行业。
  
  3、Build Up Process 增层法制程
  这是一种全新领域的薄形多层板做法,最早启蒙是源自 IBM 的SLC 制程,系于其日本的 Yasu 工厂 1989 年开始试产的,该法是以传统双面板为基础,自两外板面先全面涂布液态感光前质如Probmer 52,经半硬化与感光解像后,做出与下一底层相通的浅形"感光导孔"(Photo-Via) ,再进行化学铜与电镀铜的全面增加导体层,又经线路成像与蚀刻后,可得到新式导线及与底层互连的埋孔或盲孔。如此反复加层将可得到所需层数的多层板。此法不但可免除成本昂贵的机械钻孔费用,而且其孔径更可缩小至10mil以下。过去5~6年间,各类打破传统改采逐次增层的多层板技术,在美日欧业者不断推动之下,使得此等 Build Up Process 声名大噪,已有产品上市者亦达十余种之多。除上述"感光成孔"外;尚有去除孔位铜皮后,针对有机板材的碱性化学品咬孔、雷射烧孔 ( Laser Ablation ) 、以及电浆蚀孔 ( Plasma Etching )等不同"成孔"途径。而且也可另采半硬化树脂涂布的新式"背胶铜箔" (Resin Coated Copper Foil ) ,利用逐次压合方式 ( Sequential Lamination ) 做成更细更密又小又薄的多层板。日后多样化的个人电子产品,将成为这种真正轻薄短小多层板的天下。
  
  4、Cermet 陶金
  将陶瓷粉末与金属粉末混合,再加入黏接剂做为种涂料,可在电路板面(或内层上)以厚膜或薄膜的印刷方式,做为"电阻器"的布着安置,以代替组装时的外加电阻器。
  
  5、Co-Firing 共烧
  是瓷质混成电路板(Hybrid)的一个制程,将小型板面上已印刷各式贵金属厚膜糊(Thick Film Paste)的线路,置于高温中烧制。使厚膜糊中的各种有机载体被烧掉,而留下贵金属导体的线路,以做为互连的导线。
  
  6、Crossover越交,搭交
  板面纵横两条导线之立体交叉,交点落差之间填充有绝缘介质者称之。一般单面板绿漆表面另加碳膜跳线,或增层法之上下面布线均属此等"越交"。
  
  7、Discreate Wiring Board散线电路板,复线板
  即Multi-Wiring Board的另一说法,是以圆形的漆包线在板面贴附并加通孔而成。此种复线板在高频传输线方面的性能,比一般PCB经蚀刻而成的扁方形线路更好。
  
  8、DYCOstrate电浆蚀孔增层法
  是位于瑞士苏黎士的一家Dyconex公司所开发的Build up Process。系将板面各孔位处的铜箔先行蚀除,再置于密闭真空环境中,并充入CF4、N2、O2,使在高电压下进行电离形成活性极高的电浆(Plasma),用以蚀穿孔位之基材,而出现微小导孔 (10mil以下) 的专利方法,其商业制程称为DYCOstrate。
  
  9、Electro-Deposited Photoresist电着光阻,电泳光阻
  是一种新式的"感光阻剂"施工法,原用于外形复杂金属物品的"电着漆"方面,最近才引进到"光阻"的应用上。系采电镀方式将感旋光性带电树脂带电胶体粒子,均匀的镀在电路板铜面上,当成抗蚀刻的阻剂。目前已在内层板直接蚀铜制程中开始量产使用。此种ED光阻按操作方法不同,可分别放置在阳极或阴极的施工法,称为"阳极式电着光阻"及"阴极式电着光阻"。又可按其感光原理不同而有"感光聚合"(负性工作Negative Working )及"感光分解"(正性工作Positive Working)等两型。目前负型工作的ED光阻已经商业化,但只能当做平面性阻剂,通孔中因感光因难故尚无法用于外层板的影像转移。至于能够用做外层板光阻剂的"正型ED"(因属感光分解之皮膜,故孔壁上虽感光不足但并无影响),目前日本业者仍正在加紧努力,希望能够展开商业化量产用途,使细线路的制作比较容易达成。此词亦称为"电泳光阻"(Electrothoretic Photoresist)。
  
  10、Flush Conductor 嵌入式线路,贴平式导体
  是一外表全面平坦,而将所有导体线路都压入板材之中的特殊电路板。其单面板的做法是在半硬化(Semi Cured)的基材板上,先以影像转移法把板面部份铜箔蚀去而得到线路。再以高温高压方式将板面线路压入半硬化的板材之中,同时可完成板材树脂的硬化作业,成为线路缩入表面内而呈全部平坦的电路板。通常这种板子已缩入的线路表面上,还需要再微蚀掉一层薄铜层,以便另镀0.3mil的镍层,及20微吋的铑层,或10微吋的金层,使在执行滑动接触时,其接触电阻得以更低,也更容易滑动。但此法郄不宜做PTH,以防压入时将通孔挤破,且这种板子要达到表面完全平滑并不容易,也不能在高温中使用,以防树脂膨胀后再将线路顶出表面来。此种技术又称为Etch and Push法,其完工的板子称为Flush-Bonded Board,可用于RotarySwitch及Wiping Contacts等特殊用途。
  
  11、Frit玻璃熔料
  在厚膜糊 (Poly Thick Film, PTF)印膏中,除贵金属化学品外,尚需加入玻璃粉类,以便在高温焚熔中发挥凝聚与附着效果,使空白陶瓷基板上的印膏,能形成牢固的贵金属电路系统。
  
  12、Fully-Additive Process 全加成法
  是在完全绝缘的板材面上,以无电沉积金属法(绝大多数是化学铜),生长出选择性电路的做法,称之为"全加成法"。另有一种不太正确的说法是"Fully Electroless"法。
  
  13、Hybrid Integrated Circuit 混成电路
  是一种在小型瓷质薄基板上,以印刷方式施加贵金属导电油墨之线路,再经高温将油墨中的有机物烧走,而在板面留下导体线路,并可进行表面黏装零件的焊接。是一种介乎印刷电路板与半导体集成电路器之间,属于厚膜技术的电路载体。早期曾用于军事或高频用途,近年来由于价格甚贵且军用日减,且不易自动化生产,再加上电路板的日趋小型化精密化之下,已使得此种 Hybrid 的成长大大不如早年。
  
  14、Interposer互连导电物
  指绝缘物体所承载之任何两层导体间,其待导通处经加填某些导电类填充物而得以导通者,均称为Interposer。如多层板之裸孔中,若填充银膏或铜膏等代替正统铜孔壁者,或垂直单向导电胶层等物料,均属此类Interposer。
  
  15、Laser Direct Imaging,LDI 雷射直接成像
  是将已压附干膜的板子,不再用底片曝光以进行影像转移,而代以计算机指挥激光束,直接在干膜上进行快速扫瞄式的感光成像。由于所发出的是单束能量集中的平行光,故可使显像后的干膜侧壁更为垂直。但因此法只能对每片板子单独作业,故量产速度远不如使用底片及传统曝光来的快。LDI 每小时只能生产 30 片中型面积的板子,因而只能在雏型打样或高单价的板类中偶有出现。由于先天性的成本高居不下,故很难在业界中推广。
  
  16、Laser Maching 雷射加工法
  电子工业中有许多精密的加工,例如切割、钻孔、焊接、熔接等,亦可用雷射光的能量去进行,谓之雷射加工法。所谓 LASER 是指"Light Amplification Stimulated Emission of Radiation"的缩写,大陆业界译为"激光"为其意译,似较音译更为切题。Laser 是在 1959 年由美国物理学家 T.H.Maiman,利用单束光射到红宝石上而产生雷射光,多年来的研究已创造一种全新的加工方式。除了在电子工业外,尚可用于医疗及军事等方面。
  
  17、Micro Wire Board微封线 (封包线)板
  贴附在板面上的圆截面漆包线(胶封线),经制做PTH完成层间互连的特殊电路板,业界俗称为 Multiwire Board"复线板",当布线密度甚大(160~250in/in2) ,而线径甚小(25mil以下)者,又称为微封线路板。
  
  18、Moulded Circuit模造立体电路板
  利用立体模具,以射出成型法(Injection Moulding)或转型法,完成立体电路板之制程,称为 Moulded circuit或 Moulded Interconnection Circuit。左图即为两次射出所完成MIC的示意图。
  
  19、Multiwiring Board(or Discrete Wiring Board)复线板
  是指用极细的漆包线,直接在无铜箔的板面上进行立体交叉布线,再经涂胶固定及钻孔与镀孔后,所得到的多层互连电路板,称之为"复线板"。此系美商PCK 公司所开发,目前日商日立公司仍在生产。此种MWB可节省设计的时间,适用于复杂线路的少量机种 (电路板信息杂志第 60 期有专文介绍)。
  
  20、Noble Metal Paste 贵金属印膏
  是厚膜电路印刷用的导电印膏。当其以网版法印在瓷质的基板上,再以高温将其中有机载体烧走,即出现固着的贵金属线路。此种印膏所加入的导电金属粉粒必须要为贵金属才行,以避免在高温中形成氧化物。商品中所使用者有金、铂、铑、钯或其它等贵金属。
  
  21、Pads Only Board唯垫板
  早期通孔插装时代,某些高可靠度多层板为保证焊锡性与线路安全起见,特只将通孔与焊环留在板外,而将互连的线路藏入下一内层上。此种多出两层的板类将不印防焊绿漆,在外观上特别讲究,品检极为严格。目前由于布线密度增大,许多便携式电子产品 (如大哥大手机),其电路板面只留下SMT焊垫或少许线路,而将互连的众多密线埋入内层,其层间也改采高难度的盲孔或"盖盲孔"(Pads On Hole),做为互连以减少全通孔对接地与电压大铜面的破坏,此种SMT密装板也属唯垫板类。
  
  22、Polymer Thick Film (PTF) 厚膜糊
  指陶瓷基材厚膜电路板,所用以制造线路的贵金属印膏,或形成印刷式电阻膜之印膏而言,其制程有网版印刷及后续高温焚化。将有机载体烧走后,即出现牢固附着的线路系统,此种板类通称为混合电路板(Hybrid Circuits)。
  
  23、Semi-Additive Process半加成制程
  是指在绝缘的底材面上,以化学铜方式将所需的线路先直接生长出来,然后再改用电镀铜方式继续加厚,称为"半加成"的制程。若全部线路厚度都采用化学铜法时,则称为"全加成"制程。注意上述之定义是出自 1992.7. 发行之最新规范 IPC-T-50E,与原有的 IPC-T-50D(1988.11)在文字上已有所不同。早期之"D版"与业界一般说法,都是指在非导体的裸基材上,或在已有薄铜箔(Thin foil如 1/4 oz或 1/8 oz者)的基板上。先备妥负阻剂之影像转移,再以化学铜或电镀铜法将所需之线路予以加厚。新的50E并未提到薄铜皮的字眼,两说法之间的差距颇大,读者在观念上似乎也应跟着时代进步才是。
  
  24、Substractive Process减成法
  是指将基板表面局部无用的铜箔减除掉,达成电路板的做法称为"减成法",是多年来电路板的主流。与另一种在无铜的底材板上,直接加镀铜质导体线路的"加成法"恰好相反。
  
  25、Thick Film Circuit厚膜电路
  是以网版印刷方式将含有贵金属成份的"厚膜糊"(PTF PolymerThick Film Paste),在陶瓷基材板上(如三氧化二铝)印出所需的线路后,再进行高温烧制(Firing),使成为具有金属导体的线路系统,谓之"厚膜电路"。是属于小型"混成电路"板(Hybrid Circuit)的一种。单面PCB上的"银跳线"(Silver Paste Jumper)也属于厚膜印刷,但却不需高温烧制。在各式基材板表面所印着的线路,其厚度必须在 0.1 mm [4 mil]以上者才称为"厚膜"线路,有关此种"电路系统"的制作技术,则称为"厚膜技术"。
  
  26、Thin Film Technology薄膜技术
  指基材上所附着的导体及互联机路,凡其厚度在 0.1 mm [4 mil] 以下,可采真空蒸着法(Vacuum Evaporation)、热裂解涂装法 (Pyrolytic Coating)、阴极溅射法(Cathodic Sputtering)、化学蒸镀法 (Chemical Vapor Deposition)、电镀、阳极处理等所制作者,称之为"薄膜技术"。实用产品类有 Thin Film Hybrid Circuit及 Thin Film Integrated Circuit等。
  
  27、Transfer Laminatied Circuit转压式线路
  是一种新式的电路板生产法,系利用一种 93 mil厚已处理光滑的不锈钢板,先做负片干膜的图形转移,再进行线路的高速镀铜。经剥去干膜后,即可将有线路的不锈钢板表面,于高温中压合于半硬化的胶片上。再将不锈钢板拆离后,即可得到表面平坦线路埋入式的电路板了。其后续尚可钻孔及镀孔以得到层间的互连。CC-4 Copper complexer 4 ; 是美国PCK公司所开发在特殊无铜箔基板上的全加成法(详见电路板信息杂志第47期有专文介绍)ED Electro - Deposited Photoresist ; 电着光阻IVH Interstitial Via Hole; 局部层间导通孔(指埋通孔与盲通孔等)MLC Multilayer Ceramic;小板瓷质多层电路板PID Photoimagible Dielectric; 感光介质(指用于增层法所涂布的感光板材)PTF Polymer Thick Film; 聚合物厚膜电路片(指用厚膜糊印制之薄片电路板)SLC Surface Laminar Circuits ; 表面薄层线路系 IBM日本Yasu 实验室于1993年 6月发表的新技术,是在双面板材的外面以Curtain Coating式绿漆及电镀铜形成数层互连的线路,已无需再对板材钻孔及镀孔。 (电路板信息杂志第67期有专文介绍)
  
  软板(FPC)相关术语解析
  
  1、Access Hole 露出孔(穿露孔,露底孔)
  常指软板外表的保护层 Coverlay(须先冲切出的穿露孔),用以贴合在软板线路表面做为防焊膜的用途。但却须刻意露出焊接所需要的孔环孔壁或方型焊垫,以便于零件的焊接。所谓"Access Hole"原文是指表层有了穿露孔,使外界能够"接近"表护层下面之板面焊点的意思。某些多层板也具有这种露出孔。
  
  2、Acrylic 压克力
  是聚丙烯酸树脂的俗称,大部份的软板均使用其薄膜,当成接着之胶片用途。
  
  3、Adhesive 胶类或接着剂
  能使两接口完成黏合的物质,如树脂或涂料等。
  
  4、Anchoring Spurs 着力爪
  中板或单面板上,为使孔环焊垫在板面上有更强力的附着性质起见,可在其孔环外多余的空地上,再另行加附几只指爪,使孔环更为巩固,以减少自板面浮离的可能。如附图就是软板"表护层"下所隐约见到的着力爪示意图。
  
  5、Bandability 弯曲性,弯曲能力
  为动态软板(Dynamic Flex Board)板材之一种特性,例如计算机磁盘驱动器的打印头Print Heads)所接续之软板,其品质即应达到十亿次的 "弯曲性试验"。
  
  6、Bonding Layer 结合层,接着层
  常指多层板之胶片层,或 TAB 卷带,或软板之板材,其铜皮与聚亚醯胺(PI)基材间的接着剂层。
  
  7、Coverlay/Cover Coat 表护层、保护层
  软板的外层线路,其防焊不易采用硬板所用的绿漆,因在弯折时可能会出现脱落的情形。需改用一种软质的"压克力"层压合在板面上,既可当成防焊膜又可保护外层线路,及增强软板的抵抗力及耐用性,这种专用的"外膜"特称为表护层或保护层。
  
  8、Dynamic Flex(FPC)动态软板
  指需做持续运动用途的软性电路板,如磁盘驱动器读写头中的软板即是。此外另有"静态软板"(Static FPC),系指组装妥善后即不再有动作之软板类。
  
  9、Film Adhesive接着膜,黏合膜
  指干式薄片化的接着层,可含补强纤维布的胶片,或不含补强材只有接着剂物料的薄层,如FPC的接着层即是。
  
  10、Flexible Printed Circuit,FPC 软板
  是一种特殊的电路板,在下游组装时可做三度空间的外形变化,其底材为可挠性的聚亚醯胺(PI)或聚酯类(PE)。这种软板也像硬板一样,可制作镀通孔或表面黏垫,以进行通孔插装或表面黏装。板面还可贴附软性具保护及防焊用途的表护层(Cover Layer),或加印软性的防焊绿漆。
  
  11、Flexural Failure 挠曲损坏
  由于反复不断的弯折挠曲动作,而造成材料(板材)的断裂或损坏,称为Flexural Failure。
  
  12、Kapton 聚亚醯胺软材
  此为杜邦公司产品的商名,是一种"聚亚醯胺"薄片状的绝缘软材,在贴附上压延铜箔或电镀铜箔后,即可做成软板(FPC)的基材。
  
  13、Membrane Switch 薄膜开关
  以利用透明的聚酯类(Mylar)薄膜做为载体,采网印法将银胶(Silver Pastes或称银浆)印上厚膜线路,再搭配挖空垫片,与凸出的面板或 PCB 结合,成为"触控式"的开关或键盘。此种小型的"按键"器件,常用于手执型计算器、电子字典,以及一些家电遥控器等,均称为"薄膜开关"。
  
  14、Polyester Films聚酯类薄片
  简称PET薄片,最常见的是杜邦公司的商品Mylar Films,是一种耐电性良好的材料。电路板工业中其成像干膜表面的透明保护层,与软板(FPC)表面防焊的Coverlay都是PET薄膜,且其本身亦可以当成银膏印刷薄膜线路(Membrane Circuit)的底材,其它在电子工业中也可当成电缆、变压器、线圈的绝缘层或多枚IC的管状存于器等用途。
  
  15、Polyimide (PI)聚亚醯胺
  是一种由Bismaleimide与Aromatic diamine所共同聚合而成的优良树脂,最早是由法国"Rhone-Poulenc"公司所推出的粉状树脂商品Kerimid 601而著称。杜邦公司将之做成片材,称为Kapton。此种PI板材之耐热性及抗电性都非常优越,是软板(FPC)及卷带自动结合(TAB)的重要原料,也是高级军用硬板及超级计算机主机板的重要板材,此材料大陆之译名是"聚醯并胺"。
  
  16、Reel to Reel卷轮(盘)连动式操作
  某些电子零件组件,可采卷轮(盘)收放式的制程进行生产,如 TAB、IC的金属脚架 (Lead Frame)、某些软板(FPC)等,可利用卷带收放之方便,完成其联机自动作业,以节省单件式作业之时间及人工的成本。
  
  17、Release Agent Release Sheets脱模剂,离型膜
  一般模造塑料制品,须在模子壁内涂抹一层脱模剂,以方便成型后之脱模。电路板工业早期多层板之压合制程,尚未用到铜箔直接叠合,而只采用单面或双面薄基板之成品,进行所谓的"再压合"(Relamination)工作。在此之前需于钢板与铜面之间,多垫一张碳氟树脂的"离型膜"以预防树脂沾污到钢板上,如杜邦的商品Tedlar即是。亦称为 Release Film。 如今多层板的层压制程,绝大多数已直接采用铜箔与胶片,以代替早期的单面薄基板,不但成本降低而且多层板的"结合"(Bonding)品质也更好。只要将铜箔刻意剪裁大一些,即可防止溢胶,因而价格不菲的Tedlar也可省掉了。
  
  18、Rigid-Flex Printed Board硬软合板
  是一种硬板与软板组合而成的电路板,硬质部份可组装零件,软板部份则可弯折连通,以减少接头的麻烦与密集组装的体积,并可增加互连的可靠度。美式用语简称为Rigid-Flex,英国人却叫做Flex-Rigid。
  
  19、Steel Rule Die(钢)刀模
  是软板制程中切外形用的"刀模",其做法是将薄钢刀片,按板子外形嵌入厚木板中做成为切模,再垫以软橡皮组合的另一片垫板,以冲压方式切出软板的外形,其作业方式与一般纸器工业所用的刀模切外形者相似。
  
  20、Stiffener补强条,补强板
  某些软板在其零件组装处,需另加贴一片补强用的绝缘板材,称为Stiffener。但此种做法与"软硬合板"不同,所谓 Regid-Flex 其硬板部份也有线路及通孔的分布。而Stiffener则无任何电性功能,只做为补强用途而已。
  
  21、Wrought foil锻碾金属箔
  将铸造的金属锭块,经多次加温辊碾(Rolling)而成的薄片,称之Wrought Foil。一般动态软板(Dynamic FPC)所用的压延铜皮就是此类产品。不过业界较少使用此词,反而多称为 R.A.Foil (Rolled Annealed Foil)。FPC Flexible Printed Circutits ; 软性电路板 (软板)(大陆术语称为"挠性印制板")PI Ployimide; 聚亚醯胺是一种Tg高达 260℃的优良高功能树脂,可用以制造高价位的特殊板材,大陆术语称为"聚醯并胺"。
  
  BGA、TAB、零件、封装及Bonding制程
  
  1、Active parts(Devices) 主动零件
  指半导体类之各种主动性集成电路器或晶体管,相对另有 Passive﹣Parts被动零件,如电阻器、电容器等。
  
  2、Array 排列,数组
  系指通孔的孔位,或表面黏装的焊垫,以方格交点式着落在板面上(即矩阵式)的数组情形。常见"针脚格点式排列"的插装零件称为 PGA(Pin Grid Array),另一种"球脚格点矩阵式排列"的贴装零件,则称为 BGA(Ball Grid Array)。
  
  3、ASIC 特定用途的集成电路器
  Application-Specific Integrated Circuit,如电视、音响、录放机、摄影机等各种专用型订做的 IC 即是。
  
  4、Axial-lead 轴心引脚
  指传统圆柱式电阻器或电容器,均自两端中心有接脚引出,用以插装在板子通孔中,以完成其整体功能。
  
  5、Ball Grid Array 球脚数组(封装)
  是一种大型组件的引脚封装方式,与 QFP的四面引脚相似,都是利用SMT锡膏焊接与电路板相连。其不同处是罗列在四周的"一度空间"单排式引脚,如鸥翼形伸脚、平伸脚、或缩回腹底的J型脚等;改变成腹底全面数组或局部数组,采行二度空间面积性的焊锡球脚分布,做为芯片封装体对电路板的焊接互连工具。BGA是 1986年Motorola公司所开发的封装法,先期是以 BT有机板材制做成双面载板(Substrate),代替传统的金属脚架(Lead Frame)对 IC进行封装。BGA最大的好处是脚距 (Lead Pitch)比起 QFP要宽松很多,目前许多QFP的脚距已紧缩到 12.5mil 甚至 9.8mil 之密距 (如 P5 笔记型计算机所用 Daughter Card 上 320 脚 CPU 的焊垫即是,其裸铜垫面上的焊料现采 Super Solder法施工),使得PCB的制做与下游组装都非常困难。但同功能的CPU若改成腹底全面方阵列脚的BGA方式时,其脚距可放松到 50 或60mil,大大舒缓了上下游的技术困难。目前BGA约可分五类,即:(1)塑料载板(BT)的 P-BGA(有双面及多层),此类国内已开始量产。(2)陶瓷载板的C-BGA(3)以TAB方式封装的 T-BGA(4)只比原芯片稍大一些的超小型m-BGA(5)其它特殊 BGA ,如 Kyocera 公司的 D-Bga (Dimpled) ,olin的M-BGA及 Prolinx公司的V-BGA等。后者特别值得一提,因其产品首先在国内生产,且十分困难。做法是以银膏做为层间互连的导电物料,采增层法(Build Up)制做的 V-BGA (Viper) ,此载板中因有两层厚达10mil以上的铜片充任散热层,故可做为高功率(5~6W)大型IC的封装用途。
  
  6、Bare Chip Assembly 裸体芯片组装
  从已完工的晶圆(Water)上切下的芯片,不按传统之 IC 先行封装成体,而将芯片直接组装在电路板上,谓之 Bare Chip Assembly。早期的 COB (Chip on Board)做法就是裸体芯片的具体使用,不过 COB 是采芯片的背面黏贴在板子上,再行打线及胶封。而新一代的 Bare Chip 却连打线也省掉,是以芯片正面的各电极点,直接反扣熔焊在板面各配合点上,称为 Flip Chip 法。或以芯片的凸块扣接在 TAB 的内脚上,再以其外脚连接在 PCB 上。此二种新式组装法皆称为 "裸体芯片" 组装,可节省整体成本约 30% 左右。
  
  7、Beam Lead 光芒式的平行密集引脚
  是指"卷带自动结合"(TAB)式的载体引脚,可将裸体芯片直接焊接在TAB的内脚上,并再利用其外脚焊接在电路板上,这种做为芯片载体的梁式平行密集排列引脚,称为 Beam Lead。
  
  8、Bonding Wire 结合线
  指从 IC 内藏的芯片与引脚整间完成电性结合的金属细线而言,常用者有金线及铝线,直径在 1-2mil之间。
  
  9、Bump 突块
  指各种突起的小块,如杜邦公司一种 SSD 制程(Selective Solder Deposit)中的各种 Solder Bump 法,即"突块"的一种用途(详见电路板信息杂志第 48 期P.72)。又,TAB 之组装制程中,芯片(Chip)上线路面的四周外围,亦做有许多小型的焊锡或黄金"突块"(面积约 1μ2 ),可用以反扣覆接在 TAB 的对应内脚上,以完成"晶粒"(Chip)与"载板"(PCB)各焊垫的互连。此"突块"之角色至为重要,此制程目前国内尚未推广。
  
  10、Bumping Process凸块制程
  指在线路完工的晶圆表面,再制做上微小的焊锡凸块(或黄金凸块),以方便下游进行 TAB与Flip Chip等封装与组装制程。这种尺寸在1mm左右的微小凸块,其制作技术非常困难,国内至今尚未投入生产。
  
  11、C4 Chip Joint,C4芯片焊接
  利用锡铅之共融合金(63/37) 做成可高温软塌的凸球,并定构于芯片背面或线路正面,对下游电路板进行"直接安装"(DCA),谓之芯片焊接。C4为IBM公司二十多年前所开故的制程,原指"对芯片进行可控制软塌的芯片焊接"(Controlled Collapsed Chip Connection),现又广用于 P-BGA对主机板上的组装焊接,是芯片连接以外的另一领域塌焊法。
  
  12、Capacitance 电容
  当两导体间有电位差存在时,其介质之中会集蓄电能量,些时将会有"电容"出现。其数学表达方式C=Q/V,即电容(法拉)=电量(库伦)/电压(伏特)。若两导体为平行之平板(面积 A),而相距 d,且该物质之介质常数(Dielectric Constant)为ε时,则C=εA/d。故知当A、d不变时,介质常数愈低,则其间所出现的电容也将愈小。
  
  13、Castallation堡型集成电路器
  是一种无引脚大型芯片(VLSI)的瓷质封装体,可利用其各垛口中的金属垫与对应板面上的焊垫进行焊接。此种堡型 IC 较少用于一般性商用电子产品,只有在大型计算机或军用产品上才有用途。
  
  14、Chip Interconnection芯片互连
  指半导体集成电路(IC)内心脏部份之芯片(Chip),在进行封装成为完整零件前之互连作业。传统芯片互连法,是在其各电极点与引脚之间采打线方式 (Wire Bonding) 进行;后有"卷带自动结合"(TAB)法;以及最先进困难的"覆晶法" (Flip Chip)。后者是近乎裸晶大小的封装法(CSP),精密度非常高。
  
  15、Chip on Board 芯片黏着板
  是将集成电路之芯片,以含银的环氧树脂胶,直接贴合黏着在电路板上,并经由引脚之"打线"(Wire Bonding)后,再加以适当抗垂流性的环氧树脂或硅烷(Silicone)树脂,将 COB 区予以密封,如此可省掉集成电路的封装成本。一些消费级的电子表笔或电子表,以及各种定时器等,皆可利用此方式制造。该次微米级的超细线路是来自铝膜真空蒸着(Vacuum Deposit),精密光阻,及精密电浆蚀刻(Plasma Etching)法所制得的晶圆。再将晶圆切割而得单独芯片后,并续使晶粒在定架中心完成焊装(Die Bond)后,再经接脚打线、封装、弯脚成型即可得到常见的 IC。其中四面接脚的大型 IC(VLSI)又称"Chip Carrier芯片载体",而新式的 TAB 也是一种无需先行封装的"芯片载体"。又自 SMT 盛行以来,原应插装的电阻器及电容器等,为节省板面组装空间及方便自动化起见,已将其卧式轴心引脚的封装法,更改而为小型片状体,故亦称为片状电阻器 Chip Resistor ,或片状电容器 Chip Capacitor等。又,Chips是指钻针上钻尖部份之第一面切削刃口之崩坏,谓之Chips。
  
  16、Chip On Glass晶玻接装(COG) (芯片对玻璃电路板的直接安装)
  液晶显像器 (LCD) 玻璃电路中,其各ITO(Indium Tin Oxide)电极,须与电路板上的多种驱动 IC互连,才能发挥显像的功能。目前各类大型IC仍广采QFP封装方式,故须先将 QFP安装在PCB上,然后再用导电胶(如Ag/Pd膏、Ag膏、单向导电胶等) 与玻璃电路板互连结合。新开故的做法是把驱动用大型IC (Driver LSI)的Chip,直接用"覆晶"方式扣装在玻璃板的ITO电极点上,称为 COG法,是一很先进的组装技术。类似的说法尚有COF(Chip on Film)等。Conformal Coating 贴护层,护形完成零件装配的板子, 为使整片板子外形受到仔细的保护起见,再以绝缘性的涂料予以封护涂装,使有更好的信赖性。一般军用或较高层次的装配板,才会用到这种外形贴护层。
  
  17、Chip 晶粒、芯片、片状
  各种集成电路(IC)封装体的心脏位置处,皆装有线路密集的晶粒(Dies)或芯片(Chip),此种小型的"线路片",是从多片集合的晶圆(Wafer)上所切割而来。
  
  18、Daisy Chained Design菊瓣环设计
  指由四周"矩垫"紧密排列所组成之方环状设计,如同菊瓣依序罗列而成的花环。常见者如芯片外围之电极垫,或板面各式QFP之焊垫均是。
  
  19、Device 电子组件
  是指在一独立个体上,可执行独立运作的功能,且非经破坏无法再进一步区分其用途的基本电子零件。
  
  20、Dicing芯片分割
  指将半导体晶圆(Wafer),以钻石刀逐一切割成电路体系完整的芯片 (Chip)或晶粒(Die)单位,其分割之过程称为Dicing。
  
  21、Die Attach晶粒安装
  将完成测试与切割后的良好晶粒,以各种方法安装在向外互连的引线架体系上(如传统的Lead Frame或新型的 BGA载板),称为"安晶"。然后再自晶粒各输出点 (Output)与脚架引线间打线互连,或直接以凸块(Bump)进行覆晶法 (Flip Chip)结合,完成 IC的封装。上述之"晶粒安装",早期是以芯片背面的镀金层配合脚架上的镀金层,采高温结合(T. C. Bond)或超音波结合 (U. C. Bond)下完成结合,故称为 Die Bond。但目前为了节省镀金与因应板面"直接晶粒安装"(DCA或COB)之新制程起见,已改用含银导热胶之接着,代替镀金层熔接,故改称为"Die Attach"。
  
  22、Die Bonding 晶粒接着
  Die 亦指集成电路之心脏部份,系自晶圆(Wafer)上所切下一小片有线路的"晶粒",以其背面的金层,与定架(Lead Frame)中央的镀金面,做瞬间高温之机械压迫式熔接(Thermo Compression Bonding,T.C.Bonding)。或以环氧树脂之接着方式予以固定,称为 Die Bond,完成 IC 内部线路封装的第一步。
  
  23、Diode 二极管
  为半导体组件"晶体管"(Transistor)之一种,有两端点接在一母体上,当所施加电压的极性大小不同时,亦将展现不同导体性质。另一种"发光二极管"可代替仪表板上各种颜色的发光点,比一般灯泡省电又耐用。目前二极管已多半改成 SMT 形式,图中所示者即为 SOT-23 之解剖图。
  
  24、DIP(Dual Inline Package)双排脚封装体
  指具有双排对称接脚的零件,可在电路板的双排对称脚孔中进行插焊。此种外形的零件以早期的各式 IC 居多,而部份"网状电阻器"亦采用之。
  
  25、Discrete Component 散装零件
  指一般小型被动式的电阻器或电容器,有别于主动零件功能集中的集成电路。
  
  26、Encapsulating 囊封、胶囊
  为了防水或防止空气影响,对某些物品加以封包而与外界隔绝之谓。
  
  27、End Cap 封头
  指 SMD 一些小型片状电阻器或片状电容器,其两端可做为导电及焊接的金属部份,称为End Cap。
  
  28、Flat Pack 扁平封装(之零件)
  指薄形零件,如小型特殊的 IC 类,其两侧有引脚平行伸出,可平贴焊接在板面,使组装品的体积或厚度得以大幅降低,多用于军品,是SMT的先河。
  
  29、Flip Chip覆晶,扣晶
  芯片在板面上的反扣直接结合,早期称为 Facedown Bonding,是以凸出式金属接点(如Gold Bump或 Solder Bump)做连接工具。此种凸起状接点可安置在芯片上,或承接的板面上,再用 C4焊接法完成互连。是一种芯片在板面直接封装兼组装之技术 (DCA或COB)。
  
  30、Four Point Twisting四点扭曲法
  本法是针对一些黏焊在板面上的大型QFP,欲了解其各焊点强度如何的一种外力试验法。即在板子的两对角处设置支撑点,而于其它两对角处施加压力,强迫板子扭曲变形,并从其变形量与压力大小关系上,观察各焊点的强度。
  
  31、Gallium Arsenide(GaAs) 砷化镓 
  是常见半导体线路的一种基板材料,其化学符号为GaAs,可用以制造高速IC组件,其速度要比以硅为芯片基材者更快。
  
  32、Gate Array闸极数组,闸列
  是半导体产品的基本要素,指控制讯号入口之电极,习惯上称之为"闸"。
  
  33、Glob Top圆顶封装体
  指芯片直接安装于板面(Chip-On-Board)的一种圆弧外形胶封体(Encapsulant) 或其施工法而言。所用的封胶剂有环氧树脂、硅树脂(Silicone,又称聚硅酮) 或其等混合胶类。
  
  34、Gull Wing Tead 鸥翼引脚
  此种小型向外伸出的双排脚,是专为表面黏装 SOIC 封装之用,系 1971 年由荷兰 Philips 公司所首先开发。此种本体与引脚结合的外形,很像海鸥展翅的样子,故名"鸥翼脚"。其外形尺寸目前在 JEDEC 的 MS-012 及 -013 规范下,已经完成标准化。
  
  35、Integrated Circuit(IC) 集成电路器
  在多层次的同一薄片基材上(硅材),布置许多微小的电子组件(如电阻、电容、半导体、二极管、晶体管等),以及各种微小的互连(Interconnection)导体线路等,所集合而成的综合性主动零件,简称为 I.C.。
  
  36、J-Lead J 型接脚
  是 PLCC(Plastic Leaded Chip Carrier)"塑料晶(芯)片载体"(即 VLSI) 的标准接脚方式,由于这种双面接脚或四面脚接之中大型表面黏装组件,具有相当节省板子的面积及焊后容易清洗的优点,且未焊装前各引脚强度也甚良好不易变形,比另一种鸥翼接脚(Gull Wing Lead)法更容易维持"共面性"(Coplanarity),已成为高脚数SMD 在封装(Packaging)及组装(Assembly)上的最佳方式。
  
  37、Lead 引脚,接脚
  电子组件欲在电路板上生根组装时,必须具有各式引脚而用以完成焊接与互连的工作。早期的引脚多采插孔焊接式,近年来由于组装密度的增加,而渐改成表面黏装式 (SMD)的贴焊引脚。且亦有"无引脚"却以零件封装体上特定的焊点,进行表面黏焊者,是为 Leadless 零件。
  
  38、Known Good Die (KGD)已知之良好芯片
  IC之芯片可称为Chip或Die,完工的晶圆 (Wafer)上有许多芯片存在,其等品质有好有坏,继续经过寿命试验后 (Burn-in Test亦称老化试验),其已知电性良好的芯片称为 KGD。不过KGD的定义相当分歧,即使同一公司对不同产品或同一产品又有不同客户时,其定义也都难以一致。一种代表性说法是:「某种芯片经老化与电测后而有良好的电性品质,续经封装与组装之量产一年以上,仍能维持其良率在99. 5%以上者,这种芯片方可称KGD」。
  
  39、Lead Frame 脚架
  各种有密封主体及多只引脚的电子组件,如集成电路器(IC),网状电阻器或简单的二极管三极体等,其主体与各引脚在封装前所暂时固定的金属架,称成 Lead Frame。此词亦被称为定架或脚架。其封装过程是将中心部份的芯片(Die,或 Chip 芯片),以其背面的金层或银层,利用高温熔接法与脚架中心的镀金层加以固定,称为 Die Bond。再另金线或铝线从已牢固的芯片与各引脚之间予以打线连通,称为 Lead Bond。然后再将整个主体以塑料或陶瓷予以封牢,并剪去脚架外框,及进一步弯脚成形,即可得到所需的组件。故知"脚架"在电子封装工业中占很重要的地位。其合金材料常用者有 Kovar、Alloy 42 以及磷青铜等,其成形的方式有模具冲切法及化学蚀刻法等。
  
  40、Lead Pitch脚距
  指零件各种引脚中心线间的距离。早期插孔装均为 100mil的标准脚距,现密集组装SMT的QFP脚距,由起初的 50mil一再紧缩,经 25mil、 20mil、16mil、12. 5mil至9.8mil等。一般认为脚距在 25mil (0.653mm)以下者即称为密距(Fine Pitch)。
  
  41、Multi-Chip-Module (MCM) 多芯片(芯片)模块
  这是从 90 年才开始发展的另一种微电子产品,类似目前小型电路板的IC卡或Smart卡等。不过 MCM所不同者,是把各种尚未封装成体的IC,以"裸体芯片"(Bare Chips)方式,直接用传统"Die Bond"或新式的 Flip Chip 或TAB 之方式,组装在电路板上。如同早期在板子上直接装一枚芯片的电子表笔那样,还需打线及封胶,称为COB(Chip On Bond)做法。但如今的 MCM 却复杂了许多,不仅在多层板上装有多枚芯片,且直接以"凸块"结合而不再"打线"。是一种高层次 (High End) 的微电子组装。MCM的定义是仅在小板面上,进行裸体芯片无需打线的直接组装,其芯片所占全板面积在 70%以上。这种典型的MCM共有三种型式即 (目前看来以D型最具潜力): MCM-L:系仍采用PCB各种材质的基板(Laminates),其制造设傋及方法也与PCB完全相同,只是较为轻薄短小而已。目前国内能做IC卡,线宽在5mil孔径到 10 mil 者,将可生产此类 MCM 。但因需打芯片及打线或反扣焊接的关系,致使其镀金"凸块"(Bump)的纯度须达99.99%,且面积更小到1微米见方,此点则比较困难。MCM-C:基材已改用混成电路(Hybrid)的陶瓷板(Ceramic),是一种瓷质的多层板(MLC),其线路与Hybrid类似,皆用厚膜印刷法的金膏或钯膏银膏等做成线路,芯片的组装也采用反扣覆晶法。MCM-D:其线路层及介质层的多层结构,是采用蒸着方式(Deposited)的薄膜法,或Green Tape的线路转移法,将导体及介质逐次迭层在瓷质或高分子质的底材上,而成为多层板的组合,此种 MCM-D 为三种中之最精密者。
  
  42、OLB(Outer Lead Bond)外引脚结合
  是"卷带自动结合"TAB(Tape Automatic Bonding)技术中的一个制程站是指TAB 组合体外围四面向外的引脚,可分别与电路板上所对应的焊垫进行焊接,称为"外引脚结合"。这种TAB组合体亦另有四面向内的引脚,是做为向内连接集成电路芯片(Chip 或称芯片)用的,称为内引脚接合(ILB),事实上内脚与外脚本来就是一体。故知TAB技术,简单的说就是把四面密集的内外接脚当成"桥梁",而以OLB 方式把复杂的IC芯片半成品,直接结合在电路板上,省去传统IC事先封装的麻烦。
  
  43、Packaging封装,构装
  此词简单的说是指各种电子零件,完成其"密封"及"成型"的系列制程而言。但若扩大延伸其意义时,那幺直到大型计算机的完工上市前,凡各种制造工作都可称之为"Interconnceted Packaging互连构装"。若将电子王国分成许多层次的阶级制度时(Hierarchy),则电子组装或构装的各种等级,按规模从小到大将有:Chip(芯片、芯片制造),Chip Carrier(集成电路器之单独成品封装),Card(小型电路板之组装),及Board(正规电路板之组装)等四级,再加"系统构装"则共有五级。

  更多文章